+ y 2 + z 2хуyzxz есть тройничная квадратичная форма).

  Относительно коэффициентов М. предполагается, что они принадлежат определённому полю (см. Поле алгебраическое), например полю рациональных, действительных или комплексных чисел. Выполняя над М. действия сложения, вычитания и умножения на основании переместительного, сочетательного и распределительного законов, получают снова М. Таким образом, совокупность всех М. с коэффициентами из данного поля образует кольцо (см. Кольцо алгебраическое) — кольцо многочленов над данным полем; это кольцо не имеет делителей нуля, т. е. произведение М., не равных 0, не может дать 0.

  Если для двух многочленов Р (х ) и Q (x ) можно найти такой многочлен R (x ), что Р = QR , то говорят, что Р делится на Q; Q называется делителем, a R — частным. Если Р не делится на Q , то можно найти такие многочлены Р (х ) и S (x ), что Р = QR + S , причём степень S (x ) меньше степени Q (x ).

  Посредством повторного применения этой операции можно находить наибольший общий делитель Р и Q , т. е. такой делитель Р и Q , который делится на любой общий делитель этих многочленов (см. Евклида алгоритм ). М., который можно представить в виде произведения М. низших степеней с коэффициентами из данного поля, называется приводимым (в данном поле), в противном случае — неприводимым. Неприводимые М. играют в кольце М. роль, сходную с простыми числами в теории целых чисел. Так, например, верна теорема: если произведение PQ делится на неприводимый многочлен R , a P на R не делится, то тогда Q должно делиться на R . Каждый М. степени, большей нуля, разлагается в данном поле в произведение неприводимых множителей единственным образом (с точностью до множителей нулевой степени). Например, многочлен x 4 + 1, неприводимый в поле рациональных чисел, разлагается на два множителя

в поле действительных чисел и на четыре множителя  в поле комплексных чисел. Вообще каждый М. от одного переменного х разлагается в поле действительных чисел на множители первой и второй степени, в поле комплексных чисел — на множители первой степени (основная теорема алгебры). Для двух и большего числа переменных этого уже нельзя утверждать; например, многочлен x 3 + yz 2 + z 3 неприводим в любом числовом поле.

  Если переменным х, у, ..., w придать определённые числовые значения (например, действительные или комплексные), то М. также получит определённое числовое значение. Отсюда следует, что каждый М. можно рассматривать как функцию соответствующих переменных. Эта функция непрерывна и дифференцируема при любых значениях переменных; её можно характеризовать как целую рациональную функцию, т. е. функцию, получающуюся из переменных и некоторых постоянных (коэффициентов) посредством выполненных в определённом порядке действий сложения, вычитания и умножения. Целые рациональные функции входят в более широкий класс рациональных функций , где к перечисленным действиям присоединяется деление: любую рациональную функцию можно представить в виде частного двух М. Наконец, рациональные функции содержатся в классе алгебраических функций .

  К числу важнейших свойств М. относится то, что любую непрерывную функцию можно с произвольно малой ошибкой заменить М. (теорема Вейерштрасса; точная её формулировка требует, чтобы данная функция была непрерывна на каком-либо ограниченном, замкнутом множестве точек, например на отрезке числовой оси). Этот факт, доказываемый средствами математического анализа, даёт возможность приближённо выражать М. любую связь между величинами, изучаемую в каком-либо вопросе естествознания и техники.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату