динамические свойства рассматриваемого объекта и устанавливающий для каждого избираемого правила манипулирования «рулями» эволюцию состояния объекта. Возможности управлять объектом лимитируются не только ресурсами управления, но и тем, что в процессе движения объект не должен попадать в состояния, физически недоступные или недопустимые с точки зрения конкретных условий его эксплуатации. Так, осуществляя манёвр судном, необходимо учитывать не только технической возможности самого судна, но и границу фарватера.
Имея дело с управляемым объектом, всегда стремятся так манипулировать «рулями», чтобы, исходя из определенно начального состояния, в итоге достичь некоторого желаемого состояния. Например, для запуска ИСЗ необходимо рассчитать режим работы двигателей ракеты-носителя, который обеспечит доставку спутника на желаемую орбиту. Как правило, существует бесконечно много способов управлять объектом так, чтобы реализовать цель управления. В связи с этим возникает задача найти такой способ управления, который позволяет достичь желаемого результата наилучшим, оптимальным образом в смысле определённого критерия качества; в конкретных задачах часто требуется реализовать цель управления за наименьшее возможное время или с минимальным расходом горючего, или с максимальным экономическим эффектом и т.п.
В качестве типичного можно привести управляемый объект, закон движения которого описывается системой обыкновенных дифференциальных уравнений
=
, (1)
где
,
являющихся допустимыми с точки зрения имеющихся возможностей управления объектом. Например, в прикладных задачах часто требуется, чтобы в каждый момент времени точка (
(3)
удовлетворяет условию
, (4)
где
— заданная функция. Задача О. у. состоит в отыскании такого реализующего цель управления, для которого функционал (4) принимает наименьшее возможное значение. Т. о., математическая теория О. у. — это раздел математики, рассматривающий неклассические вариационные задачи отыскания экстремумов функционалов на решениях уравнений, описывающих управляемые объекты, и управлений, на которых реализуется экстремум.
Сформулируем для поставленной задачи необходимое условие оптимальности управления.
Принцип максимума Понтрягина. Пусть вектор-функция
