(t ) = (u 1 (t ),..., u r (t )), t £ t 0 £ t 1 , (5)

– оптимальное управление, а вектор-функция

x = x (t ) = (x 1 (t ),..., x n (t )), t £ t 0 £ t 1 ,

– соответствующее ему решение задачи (3). Рассмотрим вспомогательную линейную систему обыкновенных дифференциальных уравнений

, (6)

k = 0, 1,..., n ,

  и составим функцию

Н (y, х , u ) = ,

зависящую, помимо х и u , от вектора y = (y0 , y1 ,..., yn ). Тогда у линейной системы (6) существует такое нетривиальное решение

y = y(t ) = (y0 (t ), y1 (t ),..., yn (t )),

t £ t 0 £ t 1 ,

что для всех точек t из отрезка [t 0 , t 1 ], в которых функция (5) непрерывна, выполнено соотношение

мах Н (y(t ), х (t ), u ) = Н (y(t ), x (t ), u (t )) = 0,

                                   u Î U

причём y0 (t) º const £ 0.

  К виду (1) обычно приводятся уравнения движения в случае управляемых механических объектов с конечным числом степеней свободы. В многочисленных реальных ситуациях возникают и иные постановки задач О. у., отличающиеся от приведённой выше: задачи с фиксированным временем, когда продолжительность процесса заранее задана, задачи со скользящими концами, когда про начальное и конечное состояния известно, что они принадлежат некоторым множествам, задачи с фазовыми ограничениями, когда решение задачи (3) в каждый момент времени должно принадлежать фиксированному замкнутому множеству, и др. В задачах механики сплошных сред характеризующая состояние управляемого объекта величина х является функцией уже не только времени, но и пространственных координат (например, величина

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату