когда точки R задаются одним или несколькими числовыми параметрами (обобщёнными координатами системы). В математических исследованиях под С. п. часто понимают просто числовую функцию X (t ), могущую принимать различные значения в зависимости от случая с заданным распределением вероятностей для различных возможных её значений — одномерный С. п.; если же точки R задаются несколькими числовыми параметрами, то соответствующий С. п. X (t )={X1 (t ), X2 (t ),..., Xk (t )} называется многомерным.
Математическая теория С. п. (а также более общих случайных функций произвольного аргумента) является важной главой вероятностей теории . Первые шаги по созданию теории С. п. относились к ситуациям, когда время t изменялось дискретно, а система могла иметь лишь конечное число разных состояний, т. е. — к схемам последовательности зависимых испытаний (А. А. Марков старший и др.). Развитие теорий С. п., зависящих от непрерывно меняющегося времени, является заслугой сов. математиков Е. Е. Слуцкого , А. Н. Колмогорова и А. Я. Хинчина , американских математиков Н. Винера , В. Феллера и Дж. Дуба, французского математика П. Леей , швед. математика X. Крамера и др. Наиболее детально разработана теория некоторых специальных классов С. п., в первую очередь — марковских процессов и стационарных случайных процессов , а также ряда подклассов и обобщений указанных двух классов С. п. (цепи Маркова, ветвящиеся процессы, процессы с независимыми приращениями, мартингалы, процессы со стационарными приращениями и др.).
Лит.: Марков А. А., Замечательный случай испытаний, связанных в цепь, в его кн.: Исчисление вероятностей, 4 изд., М., 1924; Слуцкий Е. Е., Избранные труды, М., 1960; Колмогоров А. Н., Об аналитических методах в теории вероятностей, «Успехи математических наук», 1938, в. 5, с. 5—41; Хинчин А. Я., Теория корреляции стационарных стохастических процессов, там же, с. 42—51; Винер Н., Нелинейные задачи в теории случайных процессов, пер. с англ., М., 1961; Дуб Дж., Вероятностные процессы, пер. с англ., М., 1956; Леви П., Стохастические процессы и броуновское движение, пер. с франц., М., 1972; Чандрасекар С., Стохастические проблемы в физике и астрономии, пер. с англ., М., 1947; Розанов Ю. А., Случайные процессы, М., 1971; Гихман И. И., Скороход А. В., Теория случайных процессов, т. 1—2, М., 1971—73.
А. М. Яглом.
Случайных процессов прогнозирование
Случа'йных проце'ссов прогнози'рование (экстраполирование), предсказание значения случайного процесса в некоторый будущий момент времени по наблюдённым значениям этого процесса (или, более общо, какого-либо статистически с ним связанного процесса — например суммы прогнозируемого процесса с искажающими наблюдения случайными помехами, т. е. с «шумом») в прошлом и настоящем. Практически во всех представляющих интерес ситуациях предсказываемое значение процесса X (t ) в момент t = t1 не может быть точно определено по имеющимся данным наблюдений и можно лишь добиваться, чтобы случайная ошибка прогноза D = X (t1 )- X1 (t1 ) [где X1 (t1 ) — предсказанное значение X (t1 )] в среднем была бы по возможности наименьшей. В теории С. п. п. оптимальным (наилучшим) обычно считается прогноз, для которого минимально математическое ожидание квадрата ошибки D; такой оптимальный прогноз совпадает с условным математическим ожиданием случайной величины X