–t 1 ). Расстояния между частицами в У. в. меньше, чем в невозмущённом газе, вследствие сжатия газа. Если поршень сначала вдвигают в газ с небольшой скоростью и постепенно ускоряют, то У. в. образуется не сразу. Вначале возникает волна сжатия с непрерывными распределениями плотности r и давления р. С течением времени крутизна передней части волны сжатия нарастает, так как возмущения от ускоренно движущегося поршня догоняют её и усиливают, вследствие чего возникает резкий скачок всех гидродинамических величин, то есть У. в.
Законы ударного сжатия. При прохождении газа через У. в. его параметры меняются очень резко и в очень узкой области. Толщина фронта У. в. имеет порядок длины свободного пробега молекул, однако при многих теоретических исследованиях можно пренебречь столь малой толщиной и с большой точностью заменить фронт У. в. поверхностью разрыва, считая, что при прохождении через неё параметры газа изменяются скачком (отсюда название «скачок уплотнения»). Значения параметров газа по обе стороны скачка связаны следующими соотношениями, вытекающими из законов сохранения массы, импульса и энергии:
r 1 u1 = r 0 u0 р 1 + r 1 u1 2 = р 0 + r 0 u0 2 ,
e1 + р 1 / r 1 + u1 2 / 2 = e0 + р 0 / r 0 + u0 2 / 2, (1)
где p1 — давление, r1 — плотность, e1 — удельная внутренняя энергия, u1 — скорость вещества за фронтом У. в. (в системе координат, в которой У. в. покоится), а p 0 , r0 , e0 , u0 — те же величины перед фронтом. Скорость u0 втекания газа в разрыв численно совпадает со скоростью распространения У. в. u В по невозмущённому газу. Исключая из равенств (1) скорости, можно получить уравнения ударной адиабаты:
e1 — e0 = (p1 + p0 ) (V0 — V1 ),
w1 — w0 = (p1 — p0 ) (V0 + V1 ), (2)
где V = 1/r — удельный объём, w = e + p / r — удельная энтальпия. Если известны термодинамические свойства вещества, то есть функции e (р