относительное удлинение образца,  – относительное изменение поперечного размера; Е – модуль Юнга (модуль продольной упругости), n – Пуассона коэффициент . При кручении тонкостенного трубчатого образца касательное напряжение t в поперечном сечении вычисляется по значениям площади сечения, его радиуса и приложенного крутящего момента. Деформация сдвига g, определяемая по наклону образующих, связана с t равенством t = G g, где G – модуль сдвига.

  При испытаниях образцов, вырезанных из изотропного материала по разным направлениям, получаются одни и те же значения Е, G и n. В среднем изотропны многие конструкционные металлы и сплавы, резина, пластмассы, стекло, керамика, бетон. Для анизотропного материала (древесина, кристаллы, армированные бетон и пластики, слоистые горные породы и др.) упругие свойства зависят от направления. Напряжение в любой точке тела характеризуется шестью величинами – компонентами напряжений: нормальными напряжениями sхх , sуу , szz и касательными напряжениями sху , sуz , szx , Причём sху = sух и т.д. Деформация в любой точке тела также характеризуется шестью величинами – компонентами деформаций: относительными удлинениями eхх , eуу , ezz и сдвигами eху , eуz , ezx , Причём eху = eух и т.д.

  Основным физическим законом У. т. является обобщённый Гука закон , согласно которому нормальные напряжения линейно зависят от деформаций. Для изотропных материалов эти зависимости имеют вид:

  , , ,

, , , (1)

  где  - средняя (гидростатическая) деформация, l и m = G – Ламе постоянные . Т. о., упругие свойства изотропного материала характеризуются двумя постоянными l и m или какими- нибудь выраженными через них двумя модулями упругости .

  Равенство (1) можно также представить в виде

  ,..., (2)

, …,

  где   среднее (гидростатическое) напряжение, К – модуль всестороннего сжатия.

  Для анизотропного материала 6 зависимостей между компонентами напряжений и деформаций имеют вид:

   (3)

 ...............................................................

  Из входящих сюда 36 коэффициентов cij называются модулями упругости, 21 между собой независимы и характеризуют упругие свойства анизотропного материала.

  Для нелинейного упругого изотропного материала в равенствах (2) всюду вместо m входит коэффициент , а соотношение  заменяется равенством , где величина eu называется интенсивностью деформации, а функции Ф и f , универсальные для данного материала, определяются из опытов. Когда Ф (eu ) достигает некоторого критического значения, возникают пластические деформации. Законы пластичности при пропорциональном возрастании нагрузок или напряжений (простое нагружение) имеют тот же вид, но с др. значениями функций Ф и f (законы теории малых упруго-пластических деформаций), а при уменьшении напряжений (разгрузке) имеют место соотношения (1) или (2), в которых вместо sij и eij

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату