,..., хп )/w (
,...,
) = exp {S (x1 ,..., хп ) – S (
,...,
)}
(поскольку энтропия равна логарифму статистического веса , или термодинамической вероятности состояния). Под энтропией состояния неполного равновесия понимают энтропию вспомогательного равновесного состояния, которое характеризуется такими же средними значениями xi , как и данное неравновесное. Для малых Dxi = xi – xi эта формула переходит в распределение Гаусса:
w (x1 ,..., хп ) = А
,
где А – константа, определяемая из условия нормировки вероятности к 1.
Можно найти не только Ф. величин xi , но и корреляции между ними
, определяющие их взаимное влияние (лишь в случае статистически независимых величин
); примером могут служить корреляции температуры и давления:
(температура связана со средней энергией), объёма и давления:
. Для физических величин А (х, t ), В (х, t ), зависящих от координат (x ) и времени (t ), вообще говоря, имеют место пространственно-временные корреляции между их Ф. в различных точках пространства в различные моменты времени:
;
функции F называются пространственно-временными корреляционными (или коррелятивными) функциями и в состоянии статистического равновесия зависят лишь от разностей координат и времени. Функции F для плотности (n ) числа частиц
могут быть экспериментально измерены по рассеянию медленных нейтронов или рентгеновских лучей: дважды дифференциальное сечение рассеяния нейтронов определяет фурье-образ пространственно-временной корреляционной функции плотностей частиц в среде.
Ф. связаны с неравновесными процессами . Такие неравновесные характеристики системы, как кинетические коэффициенты (см. Кинетика физическая ), пропорциональны интегралам по времени от временных корреляционных функций потоков физических величин (формулы Грина – Кубо). Например, электропроводность пропорциональна интегралу от корреляционных функций плотностей токов, коэффициенты теплопроводности, вязкости, диффузии пропорциональны соответственно интегралам от корреляционных функций плотностей потоков тепла, импульса и диффузионного потока.
В общем случае существует связь между Ф. физических величин и диссипативными свойствами системы при внешнем возмущении. Реакция системы на некоторое возмущение (т. е. соответствующее изменение некоторой физической величины) определяется т. н. обобщённой восприимчивостью, мнимая часть которой пропорциональна фурье-компоненте временной корреляционной функции возмущений, связанных с данным воздействием (флуктуационно-диссипативная теорема).
Ф. в системах заряженных частиц проявляются как хаотические изменения потенциалов, токов или зарядов; они обусловлены как дискретностью электрического заряда, так и тепловым движением носителей заряда. Эти Ф. являются причиной электрических шумов и определяют предел чувствительности приборов для регистрации слабых электрических сигналов (см. Флуктуации электрические ).
Ф. можно наблюдать по рассеянию света: случайные изменения плотности среды из-за Ф. вызывают случайные изменения по объёму показателя преломления, и в однородной по составу среде или даже в химически чистом веществе может происходить рассеяние света, как в мутной среде. Это явление особенно заметно в бинарных растворах при температуре, близкой к критической температуре расслаивания, – т. н. критическое рассеяние света. Ф. также очень велики в критической точке равновесия жидкость – пар (см. Критические явления ). Ф. давления проявляются в броуновском движении взвешенных в жидкости (или газе) малых частиц под влиянием нескомпенсированных точно ударов молекул окружающей среды.