К середине века тормозящее действие ручного труда в горном и дорожном деле стало особенно ощутимо. Рабочий, который «механически ржавой лопатою мерзлую землю долбит», не мог больше угнаться за нетерпеливым бегом своего времени, и паровые машины ничем не могли ему помочь. Одному пару стало не под силу толкать поршень технического прогресса. Ему стали нужны союзники. Промышленной революции, так же как и всякой революции, нужны были взрывчатые вещества.

Современная техника располагает теперь десятками разнообразных взрывчатых веществ. А не так давно, немногим более ста лет назад, все еще была известна практически лишь одна взрывчатка — дымный порох. Долгое время порох служил только Марсу — богу войны. Но уже в XVI веке он впервые нашел себе мирное применение: с его помощью был расчищен фарватер реки Неман. В XVII веке порох начали использовать и для горных работ. Шесть столетий дымный порох исправно служил человеку, но в XIX веке стало ясно, что ему пора уходить на заслуженный отдых. В одной из своих публичных лекций Альфред Нобель так отозвался о достоинствах и недостатках дымного пороха:

«В шахте он дробит без метания; в ружье толкает пулю без дробления; в артиллерии служит обеим целям; в фейерверке спокойно горит без взрыва... Но как прислуга на все он лишен совершенства в каждом отдельном случае, и современная наука постепенно теснит его владения».

Действительно, энергия взрыва и дробящая способность дымного пороха не слишком высоки. Например, гранит он может только расколоть на крупные глыбы, которые затем приходится дробить кувалдой. При сгорании порох дает густой едкий дым. Во время оживленной канонады задыхающимся солдатам ничего не было видно на поле битвы, а после каждого выстрела ружье приходилось прочищать шомполом.

К середине XIX века, когда нужда промышленности и военного дела в новых взрывчатых веществах обозначилась с предельной остротой, химическая наука была развита уже в достаточной степени, чтобы выполнить стоящий перед нею социальный заказ. Центром научных исследований в области взрывчатых веществ в те годы по-прежнему оставался Париж, хранивший традиции великой химической школы, ведущей начало от Лавуазье. В первые десятилетия XIX века пост консультанта Управления порохов и селитр занимал известный французский ученый Гей-Люссак. Закон Гей-Люссака, связывающий объем газов с их температурой, широко используется при расчете взрывов. После Гей-Люссака эта должность перешла к его ученику и другу Пелузу.

Жюль-Теофиль Пелуз — один из крупнейших и авторитетнейших химиков своего времени. Он стал широко известен благодаря работам по изучению сахаров, молочной кислоты, процессов брожения. Пелуз впервые установил химическую природу глицерина, что имеет, как мы скоро увидим, прямое отношение к истории взрывчатых веществ. Его шеститомный курс общей химии в течение многих лет был основополагающим руководством для исследователей всех частей света. В его частную лабораторию приезжали из разных стран мира работать и учиться талантливые химики, многие из которых впоследствии прославились своими выдающимися исследованиями. Школу Пелуза прошли такие известные ученые, как Жерар, Лоран, Собреро, Жирар, Нобель, Бертло.

Однако случаю было угодно, чтобы первое крупное открытие в области взрывчатых веществ было сделано не в столичной лаборатории прославленного Пелуза, а в скромном провинциальном учреждении, не имевшем ни малейшего отношения ни к порохам, ни к селитрам. И действительно, что может быть более далеким от ратных дел, чем ботанический сад?

Открытие, о котором идет речь, совершил Анри Браконно. Жизнь его бедна внешними событиями. Свою карьеру он начал с должности аптекаря в госпитале наполеоновских войск, потом учительствовал короткое время в гимназии, а с 1807 года и до самой смерти занимал пост директора Ботанического сада в Нанси. Браконно занимался ботаникой, но сверх того любил химию и понимал в ней толк. С особым вниманием он изучал состав и свойства природных продуктов — алоэ, грибов, полыни, хлопка, желатина, молока. В 1832 году Браконно решил исследовать действие азотной кислоты на продукты растительного происхождения. Он обнаружил, что крахмал и волокна древесины хорошо растворяются в концентрированной кислоте. Если же этот раствор разбавить затем водой, выпадает белый осадок. Браконно назвал новое вещество ксилоидином, от греческого слова «ксило» — дерево. Основная составная часть дерева — целлюлоза или, по-русски, клетчатка (от слова cella — ячейка, чулан, клеть—ведет свое происхождение и келья). Поэтому химики называют продукты взаимодействия азотной кислоты и целлюлозы нитроклетчаткой. Нитроклетчатка (а ксилоидин — одна из ее разновидностей) лежит в основе современных порохов.

Браконно отметил, что его белый порошок хорошо горит, и это обстоятельство по вполне понятным причинам заинтересовало Пелуза. Парижский химик повторил опыты Браконно. На всякий случай Пелуз обработал азотной кислотой и другие вещества — бумагу, вату, хлопок, однако не дал себе труда подробно изучить свойства полученных продуктов, в чем впоследствии горько раскаялся. Что же касается Браконно, то он до самой своей смерти так и не подозревал, что его открытие имеет хоть малейшее отношение к взрывчатым веществам.

Труды Браконно принесли ему умеренную известность. Его избрали в члены-корреспонденты Парижской академии наук (она называлась тогда Институтом), он получил ряд лестных приглашений в столицу. Однако Ученый до конца жизни продолжал работать в Нанси и завещал родному городу все свое состояние. Умер он в 1855 году.

В общем, следует признать, что открытие ксилоидина прошло почти незамеченным, а имя его автора теперь мало кому известно. Между тем эта разновидности нитроклетчатки сыграла большую роль в истории науки и техники.

В 1848 году американский медик Мэйнард обнаружил, что ксилоидин хорошо растворяется в некоторых органических жидкостях, например в смеси спирта с эфиром. При этом получались густые студнеобразные клейкие массы. Поэтому ксилоидин вскоре перекрестили в «коллоксилин» (от греческих корней «клей» и «дерево»), а раствор коллоксилина стали называть «коллодий». Высохшая пленка коллодия сохраняет большую гибкость и хорошо противостоит воде и мылу, и Мейнард предложил использовать коллодий как удобное средство для заклейки мелких порезов и ран. Скоро, новое лекарство стало продаваться во всех аптеках! Любопытно, что то же открытие и в то же время сделал французский поэт и химик-любитель с близкой по написанию фамилией — Мэйнар. Однако он не обнародовал свое изобретение, считая его, очевидно, недостойным своей поэтический славы.

В 1850 году английский химик Фредерик Скотт-Арчер покрыл стеклянные пластинки смесью коллодия со светочувствительным составом. Так появились фотографические пластинки, почти не отличающиеся от современных.

В 1863 году американский наборщик Хьятт, пытаясь получить искусственную слоновую кость для биллиардных шаров (за это была обещана премия в десять тысяч долларов), изобрел целлулоид — обработанную особым образом смесь нитроклетчатки и камфары. Эта первая в мире пластмасса быстро завоевала все страны и континенты.

Наконец, в 1889 году Илэр де Шардонне, граф по рождению и химик по призванию, после пяти лет упорнейшей работы нашел способ получать из коллодии искусственное нитроцеллюлозное волокно — первое в мире волокно, созданное не природой, а человеком. Его способ, широко применяемый и теперь, заключался в том, что вязкий раствор нитроцеллюлозы продавливался сквозь тончайшие отверстия — фильеры, в результате чего получались нити любой заданной толщины. Так было положено начало современной промышленности синтетических волокон. Первая продукция машины Шардонне использовалась для получения нитей в электрических лампочках накаливания.

История коллодия — поучительный пример тесной химической и технологической близости взрывчатых веществ к другим продуктам. Скажем, бездымный порох — это разновидность пластмассы, своего рода целлулоид в погонах. Недаром химические заводы, производящие во время войны порох, в мирное время часто переключаются на получение пластмасс. Такие всем известные полимеры, как целлофан и нейлон, были разработаны на пороховых заводах Дюпона. Примеров взаимного влияния технологии взрывчатых и невзрывчатых веществ друг на друга можно найти довольно много. Проследить эту связь более подробно мы не имеем сейчас возможности. Важно подчеркнуть, что история взрывчатых веществ — это часть единой истории химии и химической промышленности.

Если открытие коллоксилина прошло относительно незаметно, то получение другой разновидности нитроклетчатки— пироксилина — имело шумный резонанс в научных и политических кругах. При получении

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату