каждая точка пройдет бесконечно малый путь, представляющий ее виртуальную скорость, то сумма сил, помноженных каждая соответственно на путь, проходимый по направлению силы точкой, к которой она приложена, будет всегда равна нулю, если малые пути, проходимые в направлении сил, считать положительными, а проходимые в противоположном направлении считать отрицательными».
Лагранж доказывал этот принцип, моделируя систему сил при помощи полиспастов и сводя действие этой системы к подъему или опусканию груза. Равновесие системы сил будет достигнуто тогда, когда при любом бесконечно малом перемещении точек системы груз не опускается. Лагранж указывал, что принцип виртуальных скоростей «дал повод для появления другого принципа, предложенного Мопертюи в 1740 г.».
История принципа П. Мопертюи также восходит к Герону, к утверждению о кратчайшем времени распространения света, которым Герои обосновал закон отражения.
Ферма применил этот принцип к преломлению света и вывел закон преломления, исходя из постулата: «Природа действует наиболее легкими и доступными путями». Свой вывод он изложил в письме к де ла Шамбру от 1 января 1662 г.
Иоганн Бернулли (1667—1748) сопоставил принцип ферма с предложенной им в 1696 г. вариационной механической задачей о линии быстрейшего ската тяжелой точки в поле тяжести (брахистохроне). Эту задачу Бернулли сформулировал так: «В вертикальной плоскости даны две точки Л и В. Определить путь АМВ, спускаясь по которому под влиянием собственной тяжести, тело М, начав двигаться из точки А, дойдет до другой точки В в кратчайшее время»
И в принципе ферма и в задаче о брахистохроне речь идет об отыскании минимального значения интеграла:
«...Мною, — писал И. Бернулли, — открыто удивительное совпадение между кривизной луча света в непрерывно меняющейся среде и нашей брахистохронной кривой». Так впервые была подмечена оптико- механическая аналогия, сыгравшая важную роль в истории физики.
Задача о брахистохроне явилась также началом разработки нового раздела математики — вариационного исчисления. В развитии этого раздела математики основополагающую роль сыграл Эйлер, издавший в 1744 г. книгу «Метод нахождения кривых линий, обладающих свойствами максимума либо минимума, или решение изопери-метрической задачи, взятой в самом широком смысле». Эйлер впервые применил термин «вариационное исчисление». Дальнейшее развитие вариационное исчисление получило в работах Лагранжа, который ввел символ варьирования 5 . Лагранж сообщил основные идеи своего метода в письме к Эйлеру еще в 1755 г. и опубликовал основополагающую статью по вариационному исчислению в 1762 г.
20 февраля 1740 г. П. Мопертюи прочитал в Парижской Академии Статью «Закон покоя». Именно об этой статье упоминал Лагранж, излагая историю принципа возможных перемещений. Мопертюи действительно ставил своей целью в этой статье найти принцип равновесия системы тел и формулировал его как экстремальный принцип для некоторой величины, которую он называл «суммой сил покоя».
Через четыре года после этого Мопертюи выступил со статьей «Согласование различных законов природы», в которой утверждал, что законы оптики являются следствием «метафизического закона», заключающегося в том, что «природа, производя свои действия, всегда пользуется наиболее простыми средствами» и что принцип ферма является принципом наименьшего действия. Свет, по мнению Мопертюи, «выбирает путь», «для которого количество действия будет наименьшим».
Мопертюи при этом поясняет, что он понимает под «количеством действия». «Это действие, — говорит он, — зависит от скорости, имеющейся у тела, и от пространства, пробегаемого последним, но оно не является ни скоростью, ни пространством, взятыми в отдельности. Количество действия тем больше, чем больше скорость тела и чем длиннее путь, пробегаемый телом; оно пропорционально сумме произведений отрезков на скорость, с которой тело проходит каждый из них».
Принцип ферма Мопертюи выражает в виде утверждения:
?(mvs) = min, а не в виде:
?(ds/v)=min.
В своей книге «Метод нахождения кривых линий» Эйлер публикует статью «Об определении движения брошенных тел в не сопротивляющейся среде методом максимумов и минимумов». «Так как все явления природы, — говорит Эйлер в этой статье,— следуют какому-нибудь закону максимума или минимума, то нет никакого сомнения, что и для кривых линий, которые описывают брошенные тела, когда на них действуют какие-нибудь силы, имеет место какое-то свойство максимума или минимума». Далее Эйлер определяет это свойство конкретно. Обозначив массу движущегося тела через М, его скорость через
пройденный путь через s, он пишет: «Теперь я утверждаю, что линия, описываемая телом, будет такова, что среди всех других линий, содержащихся между теми же пределами, у нее будет минимум
или, так как М постоянно,
Поскольку
то
«так что для кривой, описываемой брошенным телом, сумма всех живых сил, находящихся в теле, в отдельные моменты времени будет наименьшей». «Таким образом, —добавляет Эйлер, откликая сь на спор о двух мерах движения,— ни те, кто полагает, что силы следует оценивать по самим скоростям, ни те, кто — по квадратам скоростей, не найдут здесь ничего неприемлемого».
Спор о двух мерах движения, как известно, был разрешен Даламбером(
Действие ускоряющей силы ? , по Даламберу, пропорционально приращению скорости:
Но u=de/dt, где е —пройденный путь,
отсюда:
Таким образом в «Динамике» Даламбера фигурирует то же уравнение движения, что и в «Механике» Эйлера.
Второй принцип динамики Даламбера—это принцип суперпозиции движений; параллелограмм скоростей и сил. На основе этого принципа Даламбер решает задачи статики.
Третий принцип, который кладет Даламбер в основу динамики, известен ныне под названием «принцип Даламбера». Его оригинальная формулировка очень громоздка и трудно понимаема, мы ее приводить не будем. Лагранж в своей «Аналитической динамике» дает такую формулировку принципа Даламбера: «Если нескольким телам сообщить движения, которые они вынуждены изменить вследствие наличия взаимодействия между ними, то ясно, что эти движения можно рассматривать как составленные из тех движений, которые тела фактически получают, и из других движений, которые уничтожаются ; отсюда следует, что эти последние должны быть такими, что если бы тела находились исключительно под их действием, то они бы взаимно друг друга уравновесили». Приведем более современную формулировку принципа Даламбера, как она была дана знаменитым русским механиком Н.Е.Жуковским в его «Курсе теоретической механики»: «В своем «Трактате динамики» Далам-бер установил общие начала, которые позволяют задачу о движении свести к вопросам о равновесии и найти связь между действующими силами, ускорениями и силами давления, натяжения и т. д.— связь, которая имеет место при рассматриваемом движении. Это достигается введением в систему действующих сил некоторых фиктивных сил, именно сил инерции. Начало Даламбера может быть сформулировано таким образом. Если в какой-нибудь момент времени остановить движущуюся систему и прибавить к ней, кроме сил, ее движущих, еще все силы,