эта точка зрения страдает близорукостью. На мой взгляд, эти явления станут частью реальности в течение последующих тридцати-сорока лет.
Я занялся изучением тенденций развития технологии в качестве приложения к моей деятельности изобретателя. Если вы работаете над созданием новых технологий, вам необходимо предвидеть, что будет происходить с технологией в будущем, чтобы ваш проект сохранял свою жизнеспособность и полезность после реализации, а не только в момент разработки. После нескольких десятилетий прогнозирования развития технологии, я разработал математические модели развития технологий в различных областях.
Это позволило мне осуществить разработки с использованием материалов будущего и не ограничивать свои идеи ресурсами, известными нам сегодня. Как заметил Алан Кей: «Чтобы предвидеть будущее, нужно изобрести его». Так что мы можем изобретать с расчетом на будущее, если мы имеем представление о том, каким оно будет.
Возможно, самая важная из осенивших меня догадок, с которой люди быстро соглашаются, но все последствия которой очень медленно доходят до них, касается возрастания темпов технического прогресса как такового.
Один нобелевский лауреат недавно сказал мне: «Мы не увидим самовоспроизводящихся нанотехнологических механизмов, по меньшей мере, еще лет сто». Да, разумеется, это высказывание является разумной оценкой того, сколько времени уйдет на то, чтобы этого добиться. Для получения самовоспроизводящихся нанотехнологических организмов потребуется еще сто лет прогресса с учетом той скорости, с которой он протекает сейчас. Однако темпы технического прогресса не собираются оставаться на одном и том же уровне: согласно моим расчетам, они ускоряются в два раза каждые десять лет. Столетний прогресс при текущих темпах развития мы одолеем за двадцать пять лет. Следующие десять лет сойдут за двадцать, а последующее десятилетие — за все сорок лет. Так что XXI век будет эквивалентен двадцати тысячелетиям прогресса с сегодняшними темпами. Двадцатое столетие, несмотря на свою революционность, не равно ста годам прогрессивного развития с нынешними темпами. Наше ускорение до современных темпов заняло лишь двадцать лет. Достижения XXI века в области изменений и существенных сдвигов будут примерно в тысячу раз превышать результаты века двадцатого.
Многие из этих тенденций вытекают из приложения к закону Мура. Закон Мура относится к интегральным схемам и, как известно, утверждает, что вычислительная мощность, доступная за определенную цену, будет удваиваться каждые год-два. Закон Мура стал синонимом экспоненциального роста вычислительной техники.
Я обдумывал закон Мура и его контекст, по меньшей мере, лет двадцать. В чем кроется подлинная природа этой экспоненциальной тенденции? Откуда она берется? Является ли она проявлением более глубокой и основательной закономерности?
Наблюдатели указывают на то, что закон Мура вскоре исчерпает свои возможности. По мнению экспертов компании Intel и других специалистов индустрии, мы выйдем за пределы возможностей интегральных схем в течение пятнадцати лет, потому что длина основных деталей будет достигать всего лишь диаметра нескольких атомов. Так будет ли это означать завершение периода экспоненциального роста вычислительной техники?
Этот вопрос обретает чрезвычайную важность, если мы станем размышлять о природе XXI века. Обращаясь к этому вопросу, я расположил сорок девять известных компьютеров на экспоненциальном графике. Отсчет в нижнем левом углу начинается со счетной машины, которая использовалась в ходе американской переписи 1890 года (счетное оборудование на основе перфокарт). В 1940 году Алан Тьюринг создал компьютер на основе телефонных реле. Этот компьютер позволил взломать загадочные коды немцев и предоставил Уинстону Черчиллю расшифровку почти всех сообщений нацистов. Черчиллю приходилось использовать эти расшифровки с большой осторожностью. Он понимал, что масштабное использование расшифрованных посланий могло спугнуть немцев. Если, к примеру, он предупредил бы власти города Ковентри о том, что их город будут бомбить, немцы увидели бы приготовления к отражению бомбардировки и поняли бы, что их шифр разгадан. Впрочем, похоже, в ходе битвы за Британию английские летчики все время чудесным образом знали, где находятся немецкие самолеты.
В 1952 году CBS воспользовалась более сложным компьютером на основе электронных ламп, чтобы предсказать избрание Эйзенхауэра на пост президента Соединенных Штатов. В правом верхнем углу находится компьютер, за которым вы сидите в настоящий момент.
Один из глубоких выводов, к которому мы можем прийти, глядя на этот график, состоит в том, что закон Мура был не первой, а пятой парадигмой, обеспечивающей экспоненциальный рост вычислительных возможностей. Каждая вертикальная линия обозначает различные парадигмы: электромеханика; техника, основанная на реле; электронные лампы; транзисторы; интегральные схемы. Каждый раз, когда какая-то парадигма вырабатывалась, ее сменяла другая парадигма, начиная с того места, где выдыхалась ее предшественница.
Люди скоры на критику экспоненциальных трендов. Они говорят, что в конечном счете эти тренды выработают свои ресурсы, как кролики в Австралии. Но каждый раз, когда конкретная парадигма достигала своих пределов, экспоненциальный рост продолжался благодаря новому, совершенно другому методу. Электронные лампы делались все меньше и меньше, но в конце концов настал такой момент, когда стало невозможно уменьшить лампу и сохранить в ней вакуум. Тогда появились транзисторы, которые представляют собой не просто электролампу маленького размера. Они выражают абсолютно иную парадигму.
Каждая горизонтальная линия на этом графике показывает увеличение вычислительных возможностей в сто раз. Прямая линия на экспоненциальном графике обозначает экспоненциальный рост. Как видно, скорость экспоненциального роста сама возрастает в экспоненциальном порядке. Мы удваивали вычислительные мощности каждые три года в начале двадцатого столетия, каждые два года — в середине, а теперь мы удваиваем их ежегодно.
Очевидно, что шестая парадигма будет являть собой вычислительную технику в трех измерениях. Как ни крути, мы живем в трехмерном мире и наш мозг организован в трех измерениях. Человеческий мозг использует весьма неэффективную схемотехнику. Нейроны — слишком громоздкие «устройства», и работают они крайне медленно. Они используют электрохимические сигналы, обеспечивающие лишь около двухсот вычислительных операций в секунду, однако мозг получает свою поразительную мощность благодаря параллельному вычислению, которое обеспечивается его трехмерной организацией. Трехмерные компьютерные технологии начинают появляться. В Лаборатории медиа Массачусетского технологического института была создана экспериментальная технология, в которой схемы уложены в триста слоев. В последние годы в разработке трехмерных схем, действующих на молекулярном уровне, был сделан огромный шаг вперед.
Мои любимые нанолампы представляют собой шестиугольные матрицы атомов углерода, которые можно структурировать так, что они образуют любой тип электронной схемы. Из них вы можете создать эквивалент транзисторов и других электрических устройств. В физическом плане они очень прочные, их прочность превышает прочность стали в пятьдесят раз. Температурные характеристики, судя по всему, поддаются регулировке. Один кубический дюйм наноламповой схемы будет в миллион раз мощнее вычислительных возможностей человеческого мозга.
За последние несколько лет уверенность в создании трехмерных схем невероятно укрепилась. Были созданы, по крайней мере, аппаратные средства, способные конкурировать с человеческим интеллектом. Это достижение подняло более заметную проблему, а именно: «закон Мура может оказаться действующим по отношению к „железу', но не по отношению к программному обеспечению». После сорокалетнего экспериментирования с разработкой программного обеспечения я считаю, что это не так. Продуктивность софта возрастает очень быстрыми темпами. На примере одной из моих собственных компаний могу сказать, что за пятнадцать лет мы прошли путь от системы распознавания речи стоимостью в $5000, которая плохо распознавала тысячу слов, да еще и не в потоке речи, до продукта стоимостью в $50 со словарным запасом в сто тысяч слов, который намного более точен в распознавании. И это типичная картина для программного