обеспечения. На фоне всех усилий в области разработки новых программных продуктов производительность программного обеспечения также экспоненциально увеличилась, хотя и с меньшей экспонентой, чем мы видели у аппаратных средств.

Многие другие технологии совершенствуются экспоненциально. Когда около пятнадцати лет назад стартовал проект по расшифровке генома человека, скептики доказывали, что с учетом той скорости, с которой мы можем изучать геном, на осуществление проекта уйдет десять тысяч лет. Наибольшее распространение получило следующее мнение: конечно, какой-то прогресс будет, но все равно завершить проект за пятнадцать лет невозможно. Однако экономическая эффективность и производительность расшифровки ДНК удваивались ежегодно, и проект был завершен меньше чем за пятнадцать лет. За двенадцать лет нам удалось добиться того, чтобы вместо $10 расшифровка комплементарной пары ДНК стоила десятую часть цента.

Даже продолжительность жизни человека возрастает по экспоненте. В XVIII веке продолжительность жизни ежегодно увеличивалась на несколько дней, в XIX — на несколько недель. В наше время продолжительность человеческой жизни возрастает примерно на 120 дней ежегодно. А с учетом революционных открытий, сделанных на раннем этапе работы с геномом, с учетом клонирования в медицинских целях, сознательного конструирования лекарств и прочих биотехнологических преобразований многие эксперты, включая меня самого, предвидят, что в течение десяти лет мы будем добавлять к продолжительности жизни больше года ежегодно. Итак, если вы сможете зависнуть здесь лет эдак на десять, то станете свидетелями нашего дальнейшего продвижения по кривой возможностей. Мы будем в состоянии прожить достаточно долго, чтобы увидеть поразительное столетие, которое ждет нас впереди.

Миниатюризация — вот еще одна важнейшая экспоненциальная тенденция. Каждое десятилетие мы уменьшаем предметы на 5,6 % линейного размера. В следующей статье Билл Джой среди всего прочего рекомендует существенным образом ускорить развитие нанотехнологии. Однако нанотехнология важна не только потому, что ее пропагандируют специалисты по нанотехнологии. Нанотехнология — это всего лишь неизбежный конечный результат набирающей обороты тенденции уменьшать размеры предметов, которая существует уже многие десятилетия.

Ниже приводится график экспоненциального роста вычислительной техники, рассчитанный для двадцать первого века. В данный момент ваш обычный персональный компьютер стоимостью $1000 стоит где-то между мозгом насекомого и мозгом мыши. В человеческом мозге насчитывается около ста миллиардов нейронов, при этом между двумя нейронами существует примерно тысяча соединений. Эти соединения работают очень медленно, порядка двухсот вычислений в секунду, однако сто миллиардов нейронов с тысячью связей между двумя каждыми из них создают стотриллионную параллельную производительность. Если умножить эту цифру на двести вычислений в секунду, то получится двадцать миллионов миллиардов в секунду или, по компьютерной терминологии, двадцать миллиардов миллионов команд в секунду (MIPS). У нас будет двадцать миллиардов MIPS за $1000 к 2020 году.

Однако это не позволит нам автоматически достичь уровня человеческого интеллекта, потому что здесь не менее важны организация, программное обеспечение, объем памяти и «встроенное» знание. Ниже я обращусь к сценарию развития событий, согласно которому я предвижу разработку программного обеспечения, обладающего уровнем человеческого интеллекта. При этом мне кажется очевидным, что у нас будут необходимые вычислительные мощности. К 2050 году компьютер стоимостью в $1000 будет равен одному миллиарду человеческих мозгов. Возможно, это случится на год или два позднее, однако в любом случае XXI век не будет испытывать дефицит вычислительных ресурсов.

Теперь давайте рассмотрим условия виртуальной реальности, воплощенные в Матрице, — виртуальную реальность, неотличимую от настоящей реальности. Это будет возможно, однако сначала я сделаю одно критическое замечание. Толстый кабель, воткнутый в ствол мозга Нео, был использован для пущего киноэффекта, но в нем нет особой нужды: все соединения могут быть беспроводными.

Давайте возьмем за точку отсчета 2029 год и сведем вместе некоторые из тех тенденций, о которых я говорил. К тому времени мы будем уметь конструировать наноботов, микроскопических роботов, способных проникать внутрь ваших капилляров и путешествовать по вашему мозгу, изучая его изнутри. Мы почти можем создать схемы такого рода уже сейчас. Мы еще не можем сделать их достаточно маленькими, однако мы можем сделать их довольно маленькими. В министерстве обороны разрабатываются крошечные устройства-роботы под названием «умная пыль» («smart dust»). Размер этих устройств сегодня — один миллиметр. Это еще слишком много для нашего сценария, зато этих крошек можно сбрасывать с самолета, и они могут находить нужные позиции с высокой точностью. У вас могут быть тысячи этих устройств в беспроводной локальной сети. Они могут принимать визуальные изображения, связываться друг с другом, координировать, отсылать сообщения, действовать как практически невидимые шпионы и использоваться для выполнения множества военных задач.

Мы уже создаем устройства размером с кровяную клетку, проникающие в поток крови. По теме «Биологические микроэлектронные механические системы» (bioMEMS) действуют четыре крупные конференции. Наноботам, появление которых я предвижу к 2029 году, необязательно потребуются собственные средства навигации. Они могут и произвольно передвигаться по системе кровообращения, а пока они будут проходить по различным элементам нервной системы, общаться с ними можно будет точно так же, как сегодня мы общаемся с абонентами посредством системы мобильной связи.

Разрешение при сканировании головного мозга, скорость и стоимость этого сканирования — все это развивается взрывными темпами, причем по экспоненте. С каждым новым поколением способов сканирования мозга мы получаем все лучшее и лучшее разрешение. Сегодня мы обладаем технологией, позволяющей разглядеть многие из скрытых элементов человеческого мозга. Разумеется, окончательного согласия по поводу того, что это за элементы, еще не достигнуто, однако мы можем наблюдать элементы мозга с очень высоким разрешением благодаря тому, что датчик сканирующего устройства имеет размеры, приближенные к самим наблюдаемым элементам. В настоящее время мы можем сканировать мозг и отслеживать его деятельность очень подробно. Для этого нужно всего лишь перемещать датчик сканирующего устройства по всему мозгу, чтобы он находился как можно ближе к каждому из элементов нейронов.

Теперь зададимся вопросом: как мы собираемся проделать эту операцию и ничего не повредить? Ответ: нужно послать сканеры внутрь мозга. Наши капилляры устроены так, что они проходят через каждое межнейронное соединение, каждый нейрон и каждый элемент нейрона. Мы можем отправить туда миллиарды сканирующих роботов, объединенных в одну беспроводную локальную сеть, чтобы они смогли отсканировать мозг изнутри и начертить карту с высоким разрешением, отражающую все, что происходит внутри.

Что же мы будем делать с огромными базами данных, объединяющих нейронную информацию, которую мы соберем? Мы обязательно проведем реинжиниринг мозга, чтобы понять основные принципы его функционирования. Мы уже пытаемся это делать. Мы уже располагаем отсканированными изображениями определенных зон головного мозга. Эти изображения имеют высокое разрешение. Мозг — это не монолитный орган; он состоит из нескольких сотен специализированных участков, каждый из которых организован по-своему. Мы отсканировали отдельные зоны слуховой и зрительной коры и использовали эту информацию для создания более «умного» программного обеспечения. Карвер Мид из Калтеха, например, разработал мощные аналоговые чипы с цифровым управлением на основе вдохновленных биологией моделей, созданных при помощи инженерного анализа отдельных участков зрительной и слуховой систем. Его визуально-чувствительные чипы используются в цифровых камерах высокого класса.

Мы продемонстрировали, что способны понимать эти алгоритмы, однако они отличаются от алгоритмов, которыми мы обычно снабжаем наши компьютеры. Они не являются ни последовательными, ни логичными — они хаотичные, высокопараллельные и самоорганизующиеся. По своей природе они голографичны в том смысле, что главного исполнительного менеджера-нейрона в мозге не существует. Вы можете убрать любой из нейронов, отрезать любой проводок, и все останется почти без изменений, потому что информация и процессы распределяются по всей сложной сети.

Отталкиваясь от этих открытий, мы создали ряд моделей, на которые нас натолкнула биология. Именно в этой сфере я работаю, пользуясь такими методиками, как эволюционные «генетические алгоритмы» и «нейронные сети». В них задействованы подсказанные биологией модели. Нынешние

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату