1. A B C D E F G
2. B D F 0 B D F
3. C F A D G B E
4. D 0 D 0 D 0 D
5. E B G D A F C
6. F D B 0 F D B
7. G F E D C B A
8. 0 0 0 0 0 0 0
«Расщепленные» комплексные числа. 1.??? — ? -? -?
2.? -? +? -?
3.??? — ?? -?
4. - + — + — + —
5. -?? — ? -? -??
6. -? -? + —? -?
7. -? -? -? -???
8. + + + + + + +
Из этой Янтры очевидным является то, что она включает в себя локу 2 («действительные числа») и локу 4 («комплексные числа»). Мы уже знаем, что лока 4 была получена в стихии «мнимых чисел». Теперь, с использованием известных в математике обозначений запишем D?? B?? F??? 0? +. В получается, что А это корень квадратный из?. Обозначим его?. Теперь?^2 =??^3 =??^4 =?^2 =??^5 =???^6 =???^7 =????^8 =?^4 = +. Итак, локу 8 можно назвать «расщеплёнными» комплексными числами. В Янтре мы видим две локи «комплексных чисел». Такое «расщепление» можно продолжить. Следующей будет лока 16, затем 32, 64 и т. д. Однако, как видим, пристрастие к «действительным числам» сделало невидимыми другие равноправные локи. Всякая лока, несмотря на возможное включение в себя лок меньшего размера, обязательно «добавляет» собственные законы отношений. Например, в локе 8 выполняются законы локи 2 как D^2 = 0, то есть (?)*(?) = +; также выполняются законы локи 3 (А)*(В)*(Е) = 0, (C)*(F)*(G) = 0; кроме того, выполняются законы локи 4 (B)*(F) = 0, то есть (?)*(??) = +, а также локи 6 (А)*(С)*(D) = 0. Лока 8 содержит в себе и законы парных отношений локи 7. Здесь так же три пары (А)*(G) = 0, (B)*(F) = 0, (C)*(E) = 0.
Однако лока 8 «соизмерима» локой 2, а нечётные локи 3, 5, 7 не содержат ни одного закона двухполярности. Это значит, что высказывания локи 8 можно конформно отобразить на обыденные понятия линейного ума, но высказывания лок 3, 5, 7 трансцендентальны для этого вида ума.
Пространство любого числа полярностей
Плоскостная лока n — полярностей
1. Число полярностей в локе влияет на законы отношений. Однако есть закономерности при переходе от локи к локе.
2. В чётных локах будет такой «средний» объект С, что С + С = 0.
3. Доказано, что обязан быть нуль в каждой локе такой, что для любого Х будет Х + 0 = Х.
4. Обязана быть хотя бы одна пара объектов Х, Y таких, что X + Y = 0.
Теорема 5.
Если в локе допускается взаимоотношение полярностей А + А, то любая другая полярность образуется некоторым числом полярностей А.
Доказательство.
1. По аксиоме постановки в соответствие взаимодействию А + А ставим в соответствие некоторое В, то есть А + А = В.
2. Тогда для другой пара А + В = С можно записать А + (А + А) = С, то есть 3А = С. Для А + С = D можно записать А + 3А = D, то есть D = 4А. и так далее.
3. Поскольку лока ограничена числом n объектов, то наступит момент, когда N = n A.
Теорема 6.
В локе размером n ноль образуется взаимодействием полярности А n раз, то есть n А = 0.
Доказательство.
1. Запишем А + (В + С +…+ М) = Х так, что совокупность (В + С +…+ М) и есть все оставшиеся объекты локи, исключая А.
2. Полярность Х обязана принадлежать совокупности (В + С +…+ М). Более того, эта совокупность образована (n -1)А.
3. Итак, А + (n — 1)А = Х, то есть nА = Х.
4. Соответственно, Х + А = (n + 1)А. Но (n + 1)А = А, так как любой другой объект есть некоторое число взаимодействий А.
5. По свойствам нуля, доказанным в теореме 2 получается, что nА = 0. Иными словами, 0 является «последним» объектом в локе.
Примечание.
Попутно доказано, что после определения полярности А все остальные полярности «распределяются» по своим местам так, что последняя полярность занимает место нуля. Полярности выбираются произвольно, так же как и А, поэтому алфавитная последовательность не отражает необходимость. На месте нуля может оказаться любая полярность. Так образуются изоморфные локи. Число изоморфных лок будет равно числу полярностей в локе.
Суперпозиция двухполярных пространств
Суперпозиционные локи
Если аксиома 1 и аксиома 6 дают возможность взаимодействия самих лок, то возникнет вопрос о законах взаимодействия между всеми объектами, если поставлены в суперпозицию несколько лок одного числа полярностей.
Пример 13.
В своё время У.Гамильтон рискнул поставить в суперпозицию три изоморфных четырёхполярных локи. Теперь это известно как «кватернионы». Удивительно, что после этого никому не пришло в голову поставить в суперпозицию несколько изоморфных двухполярных лок. Если так же как (?)*(?) = + взять (?) *(?) = +, (j)*(j) = +, (k)*(k) = +. Согласно законам такой локи будет: (?)*(j)*(k) = +, (?)*(j) = k, (?)*(k)= j, (j)*(k)=?.
Кстати, для таких «кватернионов» выполняется комутативность!
Двухполярная лока 2
Такая лока должна иметь для суперпозиции две локи 1. Так как (0)*(0) = 0 и при иной единице (Е)*