всесторонний поиск внеземного интеллекта. Его цель – 1 000 звезд, подобных Солнцу, в пределах 200 световых лет от Земли, – наиболее вероятных мест существования планет, имеющих жизнь на поверхности. Он ищет сигналы в диапазоне от 1 000 до 3 000 МГц, распределяя частотный спектр на 2 млрд. каналов для каждой звезды.

SETI@home

Самый известный из всех проектов seti – SETI@home захватил сегодня воображение миллионов людей во всем мире. Одна из проблем с SETI-исследованиями состоит в том, что для обнаружения сигнала компьютером должен быть проанализирован гигантский объем данных радиотелескопа. Так вот, SETI@home предложил свое решение: данные, собранные SERENDIP-приемником в «Аресибо», разделяются на рабочие единицы, затем посылаются через Интернет на индивидуальные домашние ПК, где они подвергаются автономной обработке, и только потом возвращаются в SETI@home . В настоящее время в проекте задействованы 1 млн. 400 тыс. участников из 244 стран, помогающих анализировать данные «Аресибо». Потратив суммарно 110 000 лет вычислительного времени, все они вместе практически сформировали суперкомпьютер.

На сайте www.setiathome.com можно скачать программу для своего компьютера, которая будет непрерывно получать данные, обрабатывать их, когда центральный процессор простаивает, и отсылать обратно результаты, наглядно демонстрируя происходящее.

Оптический проект SETI был предложен Чарльзом Таунсом, лауреатом Нобелевской премии за работы в области лазеров, в расчете на то, что другие цивилизации могут использовать лазеры в качестве космических маяков. Существует несколько проектов, которые ищут космические вспышки лазерного света с помощью оптических телескопов. Гарвардский университет использует 1,80-метровый телескоп, чтобы следить за 2 500 звездами, подобными Солнцу. Группа исследователей в Университете Беркли, используя 75-сантиметровый телескоп обсерватории им. Лейшнера, также будет наблюдать 2 500 близлежащих звезд.

Одногектарный телескоп в Северной Калифорнии. Такое название он получил потому, что будет иметь размер стороны 100 метров. Этот изобретательный и дешевый проект объединит сигналы от 500 или больше антенн коммерческого спутникового телевидения. Благодаря объединению сигналов от индивидуальных антенн и умелой их обработке 1 HT будет способен наблюдать 100 звезд одновременно во множестве частот. В случае успеха к 1 HT присоединится «большой брат» с километровой стороной, теоретически способный обнаруживать сигналы намного более слабые, чем современные.

Людмила Князева

Планетарий: Парадоксы молчания

Бесспорно, с тех пор, как в космосе побуйствовала писательская фантазия, наука о жизни вне Земли определенно очень «заземлилась». И если в фундаментальном труде по экзобиологии – науке о внеземной жизни, изданном неполных 30 лет назад, еще утверждалось, что на Марсе можно представить себе самые разные этапы развития биологического вещества – от сложных органических соединений и продуктов химического синтеза до развитых форм жизни и следов цивилизации, – то теперь с большой степенью уверенности можно сказать, что сколь бы ни был толст лед марсианского океана, под ним скрываются в лучшем случае только бактерии.

Вечное молчание этих бесконечных пространств ужасает меня», – раз заглянув в ночное небо, записал французский ученый и философ Блез Паскаль. Но он жил в Париже времени мушкетеров: тогда о бесконечных пространствах Вселенной и знали, и задумывались еще очень мало. Хотя и Галилей, и Ньютон уже наблюдали звезды в телескоп, последний мало еще чем отличался от сильной подзорной трубы. До сенсационного открытия марсианских «каналов» Джованни Скиапарелли в 1878 году оставалось чуть более 200 лет, однако ужас одиночества, испытанный Паскалем, оказался все же фундаментальнее эйфорических представлений «цивилизованного человечества», уверившегося в начале XX века в повсеместном заселении Вселенной. Сейчас просто невозможно себе представить, насколько упрямой оказалась эта вера и какое разочарование принесли землянам первые полеты автоматических станций на Луну, Венеру и Марс, передав на Землю первые, лишенные фантастических представлений, сведения о том, что никакой жизни на этих планетах не обнаружено, а судя по окружающей обстановке, и не может быть обнаружено…

Своеобразной психологической компенсацией стал поиск более отдаленных внеземных высокоразвитых цивилизаций. Конгрессы по внеземным цивилизациям следовали один за другим, отчаяние Паскаля было сформулировано в виде принципиального научного парадокса, получившего название «парадокс молчания Вселенной», который так и остался неразрешенным – Вселенная монотонно испускала только «белый шум». Кончилось тем, что даже такие ярые сторонники поиска внеземного разума, как астроном И.С. Шкловский, в конце концов потеряли веру в возможность обрести в «бесконечных пространствах» братьев по разуму. В общем, настала пора, когда бытовавшие еще недавно представления о Космосе как о некоей фантастической лаборатории, готовой производить жизнь там и тотчас, как только для этого представятся хоть сколько-нибудь подходящие условия, сменились совершенно противоположными, упадническими взглядами: жизнь в Космосе – не правило, а исключение.

Однако к началу XXI века все, что было связано с новыми открытиями в астрофизике и биологии, опять изменилось. За последние 5 лет путем изучения отклонений орбит некоторых звезд было «просчитано» существование около сотни планет вне нашей Солнечной системы. Конечно, изучение этих планет – дело весьма отдаленного будущего, но само их обнаружение вселило надежду в сердца сторонников теории внеземной жизни, возродив наиболее радикальные проекты, связанные с исследованием ближайших планет Солнечной системы. И прежде всего, конечно, проекта полета на Марс. Напомним, что в 1976-м году, после визита «Викингов», астробиологи были крайне разочарованы Марсом: 21 снимок поверхности Красной планеты, сделанный посадочным аппаратом экспедиции, зафиксировал изображения совершенно безжизненной пустыни. Органики на поверхности Марса оказалось даже меньше, чем на Луне. Однако Марс слишком сложен и загадочен, чтобы на основании первых же полученных человечеством сведений можно было вынести окончательный вердикт о наличии или отсутствии жизни на нем.

Какая жизнь?

Наука о формах внешней («экзо») по отношению к Земле жизни называется экзобиология. Один из ведущих специалистов в этой области, член-корреспондент РАН, директор Института микробиоогии РАН В.Ф. Гальченко, так определил сферу интересов этой необычной дисциплины: как наука экзобиология может относиться и к палеонтологии, и к биологии. А предмет ее исследования… виртуален. Ибо мы до сих пор не знаем ни одной формы жизни за пределами Земли. И судить о том, какой могла бы быть эта жизнь, мы можем только по аналогии с ее земными формами. Ведь материя Вселенной – одна и строится из «кирпичиков» известной каждому школьнику системы элементов. Поэтому и жизнь вне Земли будет, скорее всего, подчиняться тем же законам, что и на Земле, как бы парадоксально это ни звучало.

Выстроить химически-непротиворечивую модель какой-то иной жизни до сих пор не удалось, хотя попытки такого рода предпринимались. Причем самые радикальные.

Известно, что основой земной жизни является углерод – в силу способности его атомов составлять длинные цепочки, сцепляясь друг с другом и с другими соединениями и образовывать сложные и пластичные формы, которые в конечном счете выходят за пределы чисто химического синтеза на новый уровень, постепенно наращивая и усложняя обмен энергией между атомами, обмен веществ, налаживая процессы деления… Иначе говоря, приобретая все признаки живой материи. Первая же попытка построить модель другой жизни заключалась как раз в том, чтобы углерод заменить, скажем, на кремний, поскольку по ряду свойств эти элементы схожи друг с другом. Но чем заменить кислород? Фтором – опять же в силу некоей гипотетической «схожести». А чем заменить водород, который из-за своих химических свойств оказывается идеальным носителем энергии? Нечем. Однако свойства кремний-фторо-водородных соединений резко меняются. Они теряют пластичность и образуют очень жесткие молекулярные решетки. И моделируемая нами жизнь начинает напоминать… кристаллы. Она теряет жизненную гибкость и возвращается обратно в мир неорганической химии. Получается, что жизнь вышла из неживой природы, а мы опять ее туда загоняем.

В свое время Джеймс Дьюи Уотсон, один из первооткрывателей ДНК, написал небольшую книгу, в которой рассматривал жизнь с точки зрения атомных и молекулярных сил. И пришел к выводу, что свойства молекулы ДНК (как носителя всей информации о живом организме) определяются атомными свойствами химических элементов, из которых она состоит: углерода, кислорода, азота и фосфора. И замена любого из

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату