Human Pathogen, Neisseria gonorrhoeae, Is Polyploid // PLoS Biology. 2006. V. 4. Issue 6.)

Контролируемая перестройка генома у инфузорий

Один из самых поразительных примеров целенаправленной перестройки генома демонстрируют инфузории. Это самые сложные из одноклеточных организмов и вообще верх того, что смогла создать эволюция на одноклеточном уровне. Строение инфузорий во многом напоминает многоклеточных, даром что клетка всего одна. Например, у многоклеточных животных различают линию генеративных клеток, геном которых обычно оберегается от всяческих изменений — ведь именно этот геном передается по наследству потомкам. Кроме того, имеется и линия соматических клеток, геном которых может меняться по мере надобности. У инфузорий тоже есть два генома — генеративный и вегетативный (соматический). Генеративный, передающийся по наследству, геном хранится в маленьком ядре (микронуклеусе), содержит кучу мобильных элементов и некодирующих участков и в целом находится в нерабочем состоянии, если не сказать — в полном хаосе. Например, многие гены в нем разорваны на куски и перемешаны. Но тем не менее это нормальный, хотя и сильно запущенный большой эукариотический геном. Кстати, число генов у инфузорий и у человека примерно одинаковое — порядка 30 тысяч. Геном микронуклеуса (МИК-геном), естественно, не работает, да он и не смог бы! Он служит только для передачи генов потомству при половом размножении.

Вегетативный — соматический — рабочий геном инфузории хранится в большом ядре, так называемом макронуклеусе. Он по многим параметрам сильно отличается от других эукариотических геномов. Он состоит из множества, иногда из многих тысяч отдельных 'нанохромосом'. Это настоящие хромосомы, только очень маленькие, обычно содержащие всего один ген. Для каждой нанохромосомы, или МАК-хромосомы, в макронуклеусе имеется очень большое число копий. Соответственно, весь МАК-геном оказывается многократно сдублирован, то есть макронуклеус является полиплоидным, тогда как микронуклеус представляет собой диплоидное ядро.

У инфузории окситрихи (Oxytricba) МАК-геном по размеру в целых 20 раз меньше МИК-генома (50 млн и 1 млрд пар нуклеотидов соответственно; для сравнения, у человека — 3,5 млрд, у бактерий — обычно до 10 млн). Такое радикальное сокращение МАК-генома при его изготовлении из МИК-генома достигается за счет выбрасывания всего 'лишнего'.

Инфузории размножаются делением, при этом делятся оба ядра. Время от времени инфузории соединяются попарно, чтобы обменяться наследственным материалом. Этот процесс называется конъюгацией и рассматривается как особая разновидность полового процесса. Во время конъюгации микронуклеус претерпевает мейоз, то есть такое деление, в ходе которого число хромосом в поделившемся микронуклеусе сокращается вдвое. Вместо одного диплоидного микронуклеуса у каждой инфузории получается по два гаплоидных (на самом деле по четыре, но два из них тут же разрушаются). Каждая инфузория передает один из двух гаплоидных микронкулеусов своей подруге, а второй оставляет себе. Микронуклеусы затем сливаются. В результате каждая инфузория снова имеет один диплоидный микронуклеус, в котором половина хромосом — ее собственная, а половина получена от партнера. Затем инфузории разъединяются и продолжают жить как жили с той небольшой разницей, что с точки зрения генетики каждая из них теперь превратилась в свою собственную дочь.

Во время конъюгации или сразу после нее макронуклеус вместе со своим геномом разрушается, а затем собирается заново. За основу берется генеративный геном микронуклеуса, но он при этом подвергается радикальной перестройке. 95 % МИК-генома просто удаляется. 'На выброс' идут практически все мобильные элементы и некодирующие последовательности. Остаются чистые гены, почти без примесей. Но реорганизация генома не сводится к удалению не нужных здесь и сейчас участков генома. Происходит также 'распутывание' — сборка работоспособных генов из разрозненных и перепутанных обрывков. Как мы помним, многие гены в МИК-геноме разорваны на мелкие кусочки и перемешаны. В промежутках между этими кусочками могут находиться длинные некодирующие вставки.

Например, в МИК-геноме ген может иметь такую структуру: 2X7X5X4X8X1X3X6 (цифрами обозначены 'рабочие' фрагменты гена, буквой X — ненужные вставки различной длины). В МАК-геноме этот ген будет выглядеть так: 12345678.

Откуда клетка знает, в каком порядке нужно соединять обрывки? Ответ на этот вопрос был получен лишь в конце 2007 года.

Исследователи из Принстонского университета установили, что для 'распутывания' генетической информации инфузории используют образцы (матрицы), представляющие собой молекулы РНК, считанные с нанохромосом макронуклеуса (МАК-хромосом) перед тем, как макронуклеус был разрушен. Чтобы это выяснить, пришлось провести множество сложных экспериментов (Mariusz Nowacki, Vikram VIijayan, Yi Zhou, Klaas Schotanus, Thomas G. Doak, Laura F. Landweber. RNA-mediated epigenetic programming of a genome-rearrangement pathway // Nature. 2008. V. 451. P. 153–158.).

Для проверки гипотезы о роли РНК-матриц в сборке МАК-хромосом исследователи кормили инфузорий генно-модифицированными бактериями, производящими двухцепочечные молекулы РНК, совпадающие по последовательности нуклеотидов с фрагментом одной из МАК-хромосом. Эукариотические клетки относятся к двухцепочечным РНК с опаской, принимают их за вирусов и начинают уничтожать все РНК с такой же последовательностью нуклеотидов, в том числе и обычные, одноцепочечные. Идея состояла в том, что, проглотив бактерию, инфузория сама уничтожит одну из РНК-матриц, необходимых ей для сборки МАК-хромосом. Так и вышло. В результате после конъюгации получились инфузории, у которых соответствующий участок одной из МАК-хромосом оказался собран неправильно или вообще не собран — просто оставлен в том виде, в каком он был в МИК-хромосоме. При этом все остальные МАК-хромосомы были собраны правильно.

Стало быть, РНК-матрицы действительно участвуют в программируемой перестройке генома. Но что они собой представляют — являются ли они копиями целых нанохромосом или отдельных их участков?

Исследователи стали выделять и анализировать РНК из инфузорий на разных стадиях жизненного цикла. Выяснилось, что через несколько часов после конъюгации (как раз тогда, когда старый макронуклеус разрушается, а новый начинает формироваться) в клетках появляются длинные молекулы РНК, соответствующие целым МАК-хромосомам вместе с концевыми участками — теломерами. Через 30–50 часов после конъюгации эти молекулы исчезают.

Таким образом, перед тем как уничтожить макронуклеус вместе с вегетативным геномом, клетка снимает 'резервную копию' с каждой МАК-хромосомы. Эта копия, представляющая собой молекулу РНК, в дальнейшем используется как образец для сборки новых маленьких и аккуратных МАК-хромосом из того безобразия, которое записано в МИК-хромосомах.

Следующий вопрос состоял в том, насколько точно РНК- матрицы регулируют процесс сборки МАК- хромосом и можно ли управлять этим процессом, внедряя в клетку искусственные РНК-матрицы. Исследователи синтезировали несколько молекул РНК, похожих на 'настоящие' РНК-матрицы, но с измененным порядком фрагментов. Например, если для МИК-гена со структурой 2X7X5X4X8X1X3X6 правильная РНК-матрица имеет вид 12345678, то в искусственной матрице какую-нибудь пару фрагментов меняли местами: 13245678.

РНК-матрица, считанная с МАК-хромосомы перед разрушением макронуклеуса, служит 'ключом' для распутывания генетической информации, содержащейся в МИК-хромосоме. Черным цветом обозначены концевые участки хромосом — теломеры.

Впрыскивание таких матриц в инфузорий после конъюгации приводило к формированию МАК- хромосом двух типов: одни воспроизводили правильный порядок фрагментов, ведь правильные матрицы из клеток не удалялись. Другие — тот, который присутствовал в искусственных матрицах. Таким образом, РНК-матрицы осуществляют весьма точное управление процессом сборки МАК-хромосом, и при помощи

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату