южноамериканского сумчатого зверька — серого короткохвостого опоссума.

Геном опоссума был прочтен в мае 2007 года (Т. S. Mikkelsen et al. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences // Nature. 2007. V. 447. P. 167– 177.). Этот зверек был выбран для геномных исследований не случайно — он является важным лабораторным объектом, на котором изучают, в частности, регенерацию и формирование злокачественных опухолей. Кроме того, предполагали, что сравнение с геномом сумчатого животного поможет лучше понять прочтенные ранее геномы плацентарных — человека, шимпанзе, макака-резуса, собаки, мыши, крысы. Эти надежды полностью оправдались.

Различия в наборе белок-кодирующих генов между опоссумом и человеком оказались очень невелики. Подавляющее большинство генов опоссума имеют бесспорные человеческие аналоги и наоборот.

В целом в белок-кодирующих областях геномов сумчатых и плацентарных за 180 миллионов лет, прошедших после разделения этих линий, возникло сравнительно мало эволюционных инноваций. По современным представлениям, ведущую роль в эволюции высших организмов должны были играть изменения регуляторных участков генома, которые сами не кодируют белков, но влияют на работу белок- кодирующих генов. Геном опоссума блестяще подтвердил эту теорию.

Сравнительный анализ геномов опоссума, плацентарных и курицы показал, что в эволюции плацентарных подавляющее большинство эволюционных инноваций было связано с появлением новых участков ДНК, которые не кодируют белков, но выполняют важные регуляторные функции. Из всех функционально важных кодирующих участков генома плацентарных лишь около одного процента появились после отделения плацентарных от общего предка с сумчатыми. Что же касается функционально важных некодирующих (то есть регуляторных) последовательностей, то из их числа целых 20 % оказались уникальными для плацентарных. Иными словами, скорость появления новых регуляторных участков генома в эволюции плацентарных была в 20 раз выше, чем скорость появления новых кодирующих участков.

У читателя может возникнуть резонный вопрос, почему мы говорим об эволюции плацентарных в связи с прочтением генома опоссума — зверька, относящегося не к плацентарным, а к сумчатым. Дело в том, что только сравнение с геномом опоссума позволило ученым установить, какие из некодирующих последовательностей геномов плацентарных являются новыми, то есть появившимися после разделения эволюционных линий сумчатых и плацентарных. Для того чтобы понять эволюционную роль изменений в некодирующих последовательностях, нужно еще знать, какие из этих последовательностей являются функционально важными, а какие нет. Для плацентарных это можно сделать, сравнивая между собой геномы разных видов: если некодирующий участок сходен, например, у человека и собаки, значит, он, скорее всего, является важным (отбор отбраковывал слишком сильные изменения в этом участке). Для сумчатых этого сделать пока нельзя, поскольку прочтен геном только одного вида сумчатых. Именно поэтому геном опоссума позволил гораздо больше узнать об эволюции плацентарных, чем сумчатых.

Как и следовало ожидать, особенно много новых регуляторных последовательностей у плацентарных появилось в окрестностях генов, кодирующих ключевые регуляторы индивидуального развития, в том числе Нох-генов (см. главу 5). Сами эти гены отличаются повышенной консервативностью — они очень похожи у плацентарных, опоссума и даже курицы. Получается, что изменения в строении организма у плацентарных млекопитающих были обусловлены в основном добавлением новых регуляторов к генам — регуляторам онтогенеза.

Самый яркий результат исследователи получили в ходе изучения происхождения новых регуляторных последовательностей, возникших в ходе эволюции плацентарных. В принципе, эти последовательности могут появляться тремя способами: 1. в результате изменения 'до неузнаваемости' каких-то старых, предковых регуляторных последовательностей; 2. в результате дупликации старых регуляторных последовательностей и последующего накопления различий между копиями; 3. заново, из последовательностей, которые у предков были нефункциональными, в том числе из 'прирученных' мобильных элементов.

Ранее было выявлено несколько случаев, когда в эволюции позвоночных новые регуляторные последовательности формировались из мобильных генетических элементов. Как мы уже знаем, сама структура МГЭ делает их превосходными 'заготовками' для создания новых регуляторных элементов в хозяйском геноме. МГЭ обычно имеют свои собственные регуляторные элементы, например, места прикрепления транспозаз — ферментов, осуществляющих перемещения МГЭ. Эти регуляторные элементы легко могут быть адаптированы для регуляции работы генов хозяйского генома. Однако до сих пор оставалось неясным, являются ли выявленные случаи удачного приручения транспозонов редкими исключениями или общим правилом. Теперь наконец можно с уверенностью сказать: это правило.

Оказалось, что в человеческом геноме как минимум 16 % из числа важных регуляторных последовательностей, уникальных для плацентарных, представляют собой участки мобильных элементов. При создании новых регуляторных последовательностей у плацентарных в ход пошли все основные группы транспозонов и ретротранспозонов. Причем вышеупомянутые 16 % — это, несомненно, сильно заниженная оценка. Дело в том, что 'прирученный', утративший подвижность транспозон в результате накопления мутаций становится неузнаваемым примерно за 100–200 миллионов лет. Сохранится в целости лишь тот его фрагмент, который оказался полезен хозяйскому геному, но этого, скорее всего, будет недостаточно, чтобы распознать в таком фрагменте бывший транспозон. За время, прошедшее с момента обособления плацентарных, эта судьба должна была постигнуть значительную часть прирученных транспозонов.

Таким образом, 'одомашнивание' мобильных генетических элементов играет крайне важную роль в эволюции млекопитающих. Скорее всего, это справедливо и для других живых организмов, но чтобы это доказать, необходимы дальнейшие исследования.

Но вернемся к наследованию приобретенных признаков. Связь МГЭ и вирусов с 'ламарковскими' механизмами наследования может оказаться еще более тесной, чем принято считать. Можно предположить — пока лишь теоретически, — что при помощи МГЭ высшие организмы могут иногда передавать своему потомству вполне исчерпывающую и адекватную информацию о полезных адаптациях, выработанных ими в течение жизни. По сути дела, это и есть 'ламарковское' наследование в чистом виде и без всяких оговорок, в том самом смысле, какой вкладывал в это понятие сам Ламарк.

Эта смелая гипотеза была предложена и подробно обоснована австралийским иммунологом Э. Стилом и его коллегами (Э. Стил, Р. Линдли, Р. Бландэн. Что если Ламарк прав? Иммуногенетика и эволюция. 2002. http://evolbiol.ru/lamarck.htm.). Мы помним из главы 'Управляемые мутации', как лимфоциты млекопитающих производят гены новых защитных белков-антител в ходе выработки приобретенного иммунитета. Для этого исходные генетические заготовки сначала комбинируются разными способами, а затем подвергаются интенсивному мутированию и отбору. Таким образом формируется новый ген, обеспечивающий защиту против какой-нибудь инфекции — например, против новой болезнетворной бактерии. Выработка приобретенного иммунитета требует времени, и не всегда организм успевает справиться с этой задачей. Против некоторых самых опасных возбудителей было бы выгодно иметь врожденный иммунитет, а не приобретать его каждый раз заново при столкновении с инфекцией. Собственно говоря, именно этот 'недостаток' нашей иммунной системы и пытается восполнить современная медицина, осуществляя вакцинацию людей и домашних животных. Если бы генетические изменения, возникающие в лимфоцитах при выработке приобретенного иммунитета, могли иногда передаваться потомству, это было бы аналогично естественной, природной вакцинации последующих поколений.

Но как такое может произойти? Ведь для этого новый вариант защитного гена, сформировавшийся в лимфоцитах, должен быть перенесен в половые клетки и встроен в их геном. Кто или что может служить переносчиком генов из лимфоцитов в половые клетки? По мнению Стила, на роль таких переносчиков идеально подходит одна из разновидностей МГЭ, которой буквально кишат геномы млекопитающих, — так называемые эндогенные ретровирусы. Это геномы ретровирусов, которым когда-то удалось встроиться в геном половых клеток, или 'продвинутые' ретротранспозоны, способные к образованию вирусоподобных частиц. Грань между сложными ретротранспозонами и простыми ретровирусами весьма условна. Эндогенные ретровирусы, разумеется, передаются по наследству точно так же, как любые другие участки генома. При этом они сохраняют способность 'оживать', то есть упаковывать свой геном в белковую оболочку (капсид) и переходить из клетки в клетку. Вместе со своими собственными генами обратной

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату