отключают в своих яйцеклетках те гены, которые могут эти притязания усилить. Действительно, большинство генов млекопитающих, подвергающихся родительскому импринтингу, так или иначе связаны с внутриутробным развитием, строением плаценты и т. п.

 Из-за этого у млекопитающих (в отличие от многих других животных, таких как насекомые или ящерицы) принципиально невозможно развитие зародыша на основе только материнских или только отцовских генов.

 Можно взять только что оплодотворенную яйцеклетку какого- нибудь другого животного (не млекопитающего, а, например, лягушки), в которой ядра яйцеклетки и сперматозоида еще не успели слиться, удалить из нее отцовское ядро и заменить его ядром из другой яйцеклетки. Два 'материнских' ядра сольются, и из такой яйцеклетки в благоприятных условиях может развиться нормальный организм, все гены которого — материнские. Можно искусственно сделать яйцеклетку с двумя отцовскими ядрами, и из нее тоже может вырасти жизнеспособное животное. Однако с млекопитающими этот номер не пройдет. Без отцовских генов у эмбриона не разовьется плацента, а без материнских плацента разовьется даже лучше, чем надо, но не будет нормально развиваться сам эмбрион.

 Дополнительная гипотеза, более симпатичная с этической точки зрения, была высказана совсем недавно (Jason В. Wolf, Reinmar Hager. A Maternal-Offspring Coadaptation Theory for the Evolution of Genomic Imprinting // PLoS Biology, 2006. 4(12)). Согласно этой гипотезе основной смысл геномного импринтинга — достижение лучшей совместимости между матерью и плодом, то есть на первое место ставятся не антагонистические взаимоотношения матери и эмбриона, а кооперативные. Если часть отцовских генов будет выключена, то у эмбриона будут работать только материнские копии этих генов, и эмбрион, таким образом, будет по своим физиологическим и биохимическим свойствам больше похож на мать, и им легче будет приспособиться друг к другу. Эта гипотеза предполагает, что в ходе родительского импринтинга должно отключаться больше отцовских генов, чем материнских, и факты это подтверждают.

Метилирование и деметилирование генов играют важную роль в процессе индивидуального развития многоклеточного организма, где они служат для контроля работы генов в развивающихся органах и тканях. Кроме того, при помощи метилирования клетки борются с чрезмерной активностью мобильных генетических элементов. Избирательное метилирование МГЭ снижает частоту их 'прыжков'. Особенно тщательно многоклеточные организмы 'следят' за активностью МГЭ при созревании сперматозоидов (см. главу 'На подступах к неведомому').

Очень важно, что метилирование дает клетке возможность попутно контролировать и частоту мутирования тех или иных генов. Как уже отмечалось в главе 'Управляемые мутации', метилирование цитозина (Ц) резко повышает вероятность мутации, в результате которой цитозин заменяется тимином (Т). Метилирование ДНК активно контролируется клеткой, таким образом, в клетке реально существует механизм, позволяющий целенаправленно регулировать вероятность мутирования определенных участков генома.

Взаимное включение и выключение генов. Еще один возможный вариант эпигенетического наследования приобретенных признаков основан на системах взаимной активации и инактивации генов. Допустим, ген А производит белок, одно из действий которого состоит в блокировании работы гена Б, а ген Б, в свою очередь, кодирует другой белок, способный 'выключать' ген А. Такая система может находиться в одном из двух состояний: либо ген А работает, и тогда ген Б выключен, либо наоборот. Допустим, что переход системы из одного состояния в другое может происходить только в результате какого-то особенного внешнего воздействия, и случается такое редко. То состояние, в котором находится эта двухгенная система в клетках матери, будет через яйцеклетку передаваться ее потомству (поскольку сперматозоид содержит пренебрежимо малое количество белков). Если же в течение жизни матери система переключится в другое состояние, то этот приобретенный признак передастся потомству, родившемуся после 'переключения'. Опять получается наследование по Ламарку. Точнее, возможность такого наследования. И опять, как и в предыдущих случаях, живые организмы, похоже, не очень-то торопятся воспользоваться этой замечательной возможностью.

Мы видим, что 'ламарковское' наследование приобретенных признаков вполне осуществимо технически. Имеется целый ряд молекулярных механизмов, способных обеспечить целенаправленную передачу потомству наследуемой информации о приобретенных признаках. Тот факт, что живые организмы редко используют эти возможности, говорит о том, что наследование 'по Ламарку' им просто не выгодно.

 Негенетическая 'память поколений'. Передача информации от родителей к потомкам может осуществляться тремя основными путями, два из которых общеизвестны: это генетическая наследственность, свойственная всем без исключения живым организмам, и обучение, характерное только для животных со сложной нервной системой.

Третий путь менее известен и гораздо хуже изучен, однако и он, судя по всему, играет важную роль в жизни многих организмов. Это так называемые 'родительские эффекты' — внегенетические изменения у потомства, обусловленные условиями жизни и заботой родителей. Простейший пример — самка, плохо питавшаяся в течение своей жизни, откладывает яйца с меньшим количеством питательных веществ, из которых развивается — даже при 'хороших' генах — сравнительно чахлое потомство. Чем не наследование 'приобретенного признака'?

 Более сложные варианты могут включать различные эпигенетические изменения наследственного материала (ДНК), о которых мы говорили выше, в том числе геномный импринтинг, который представляет собой не что иное, как целенаправленное манипулирование наследственными свойствами потомства. Кроме того, известно, что эмбриональное развитие животных, особенно на начальных этапах, во многом зависит от разнообразных молекул (в том числе матричных РНК), поступающих в яйцеклетку из материнского организма (см. раздел 'Нужны ли эмбрионам гены' в главе 5). Ясно, что условия жизни матери в принципе могут влиять на количество и состав этих веществ и, следовательно, на развитие зародыша.

 Изучать родительские эффекты легче всего у тех животных, в жизненном цикле которых присутствует партеногенетическое размножение (развитие потомства из неоплодотворенныхяиц) — как, например, у рачков-дафний. В этом случае геномы матери и ее дочерей идентичны и легче отличить 'материнские' эффекты от генетических.

 Недавно российским ученым удалось показать методом моделирования, что материнский эффект — негенетическая передача от матери к потомству информации о длине светового дня и обилии пищи — играет важную роль в сезонных изменениях численности и поведения дафний и делает популяцию более устойчивой. Наличие материнского эффекта у дафний, вначале предсказанное теоретически, недавно получило экспериментальные подтверждения.

 Еще в 1996 году А. А. Умнов и В. Р. Алексеев разработали имитационную модель для проверки гипотезы о существовании у ветвистоусых рачков материнского эффекта. В модели предполагалось, что дафнии передают потомству информацию о трофических условиях (то есть о том, насколько хорошо питалась мать). Позже эта гипотеза была подтверждена экспериментально (Alekseev, Lampert. Maternal control of resting-egg production in Daphnia. // Nature. 2001. V. 414. P. 899–901.). Выяснилось, что дафнии передают потомству информацию не только о своем питании, но и об изменениях длины светового дня. Вследствие этого особи, имеющие одинаковый размер и возраст, могут по-разному реагировать на одни и те же пищевые и температурные условия только потому, что их матери имели разную жизненную историю.

Ветвистоусый рачок Daphnia longispina — массовый представитель зоопланктона озер и луж умеренной зоны. На фотографии видны зреющие яйца в выводковой камере.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату