1. Отношение инцидентности между точками и прямыми: точка и прямая могут быть или не быть инцидентны друг другу. В школьной геометрии употребляется более приземлённая терминология: когда точка и прямая инцидентны, говорят “точка лежит на прямой” или же “прямая проходит через точку”.

2. Отношение ‘между’, связывающее тройки точек: из трёх точек одна может лежать или не лежать между двумя другими.

3—4. Отношение конгруэнтности отрезков и отношение конгруэнтности углов: два отрезка или два угла могут быть или не быть конгруэнтны друг другу. Когда-то в наших школах не боялись слова “конгруэнтны”; сейчас, к сожалению, там велено заменить это слово на слово “равны”. Почему “к сожалению”? А потому, что ведь имеется в виду отношение не между длинами отрезков или между величинами углов (и те, и другие действительно равны, если соответствующие отрезки или углы конгруэнтны), а между отрезками и между углами как геометрическими фигурами. А каждая сущность, геометрическая фигура в частности, может быть равна только самой себе.

Аксиоматическое построение геометрии не предполагает разъяснения того, чтбо такое точки, прямые и названные отношения. Вместо этого формулируются аксиомы, в которых указывается, каким законам подчиняются точки, прямые, инцидентность, отношение ‘между’, конгруэнтность отрезков и конгруэнтность углов. Из этих аксиом и выводятся теоремы геометрии. Говоря формально, аксиомы могут быть какими угодно, лишь бы они не противоречили друг другу. Но ежели мы желаем, чтобы теория описывала реальность, то, как уже отмечалось, и аксиомы, связывающие идеальные объекты и отношения теории, должны отражать свойства тех сущностей реального, физического мира, отражением каковых и служат указанные идеальные объекты и отношения, положенные в основу теории. В частности, отношение конгруэнтности геометрических фигур должно отражать возможность одной фигуры быть совмещённой с другой посредством перемещения.

На примере куздр, бокров и будлания мы попытались вкратце изложить суть аксиоматического метода. Несколько заключительных замечаний относительно этого примера. Заменим в вышеприведённых аксиомах (1) — (4) слово “куздра” на слово “точка”, слово “бокр” на слово “прямая”, слово “будлать” на выражение “лежать на”. Аксиома (4) превратится тогда в такое утверждение (!4): На каждой прямой лежат по меньшей мере две точки . Аналогично, аксиомы (1), (2) и (3) превратятся в утверждения (!1), (!2) и (!3), которые мы просим любезного читателя образовать самостоятельно. Утверждения (!1), (!2), (!3) и (!4) составляют в своей совокупности группу так называемых аксиом связи планиметрии, регулирующих то, как точки связаны с прямыми. Читатель может теперь перевести аксиому о параллельных на язык куздр: Для куздры, не будлающей заданного бокра, существует не более одного бокра... (благоволите продолжить). И последнее — странные эти слова мы заимствовали у выдающегося отечественного языковеда Льва Владимировича Щербы, который в двадцатых годах XX века учил студентов извлекать максимум лингвистической информации из фразы: Глокая куздра штеко будланула бокра и курдячит бокрёнка .

 

Глава 9. Проблема на миллион долларов

Давно известна классическая формула репортёров: если собака укусила человека, это не новость; если человек укусил собаку — это новость. Сведения о том, что петербургский математик Григорий Перельман решил великую математическую проблему, стоявшую более ста лет, начали появляться в средствах массовой информации с 2003 года. Но это была ещё не новость. Подлинной новостью, согласно приведённой формуле, стала сенсация, облетевшая СМИ и заметное время удерживаемая ими летом 2006 года: Перельман отказался от всех присуждённых ему наград — в частности, от миллиона долларов. Корреспондентам, пытавшимся взять у него интервью, Перельман вежливо, но решительно отказал во встрече, сославшись на неуместную шумиху, но прежде всего на то, что должен идти в лес по грибы, — эти причины отказа были названы им в оглашённой по телевидению записи телефонного разговора с домогающимися корреспондентами. Одновременно сообщалось, что проблема не только трудная и знаменитая, но и существенная для теоретической физики, а именно для понимания устройства окружающего нас физического пространства.

Пожалуй, со времени вхождения в общекультурный оборот проблемы Ферма ни одна математическая проблема с сопровождающим её шлейфом обстоятельств не приобретала такой массовой известности. Произошло вторжение математической проблематики в общественное сознание. Следует ли закрепить величие великой проблемы тем, что оставить её окружённой ореолом тайны, открытой лишь для посвящённых и полностью недоступной пониманию широкой публики? Не знаю; может быть, и стоит. Тем не менее в этой главе мы попытаемся в самых общих чертах объяснить читателю-нематематику, в чём состоит проблема.

Но сперва о “шлейфе обстоятельств”. Григорию Яковлевичу Перельману, безработному кандидату физико-математических наук, в отличие от якобы доказавших теорему Ферма “академиков” (см. выше главу 2) и в самом деле решившему так называемую проблему Пуанкаре, ещё только предстоит отказаться (или не отказаться) от миллиона долларов.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату