До тех пор, пока премия не будет ему предложена, Перельман, по его собственным словам, не намерен заниматься решением вопроса, принимать её или нет. Что касается самой этой премии, то расположенный в Массачусетсе частный Математический институт Клэя (Clay Mathematics Institute) действительно включил проблему Пуанкаре в список из семи математических “Проблем Тысячелетия” и за решение каждой из них обещает выплатить миллион. Но выплата происходит по прошествии определённого срока и после специальной экспертизы. В случае проблемы Пуанкаре ни то, ни другое, кажется, ещё не произошло. К тому же к рассмотрению, как правило, принимаются лишь решения, опубликованные в авторитетных изданиях, реферируемых в специальных реферативных журналах. Ни одно из бумажных изданий Перельман не удостоил и своё решение обнародовал лишь в Интернете. От чего Перельман действительно отказался, так это от медали Филдса.
Математика, как известно, не входит в список наук, за которые присуждают Нобелевские премии. Существует забавная литература, посвящённая попыткам выяснить причину того, почему математика не была включена в завещание Нобеля. Наиболее популярное объяснение сводится к
Медаль Филдса по уровню престижа занимает в мире математиков примерно такое же положение, какое занимает Нобелевская премия в мире, скажем, физиков, и как бы заменяет собою эту премию. Имеются по меньшей мере три отличия филдсовской медали от Нобелевской премии. Нобелевская премия присуждается ежегодно, филдсовская медаль — раз в четыре года; зато присуждается от двух до четырёх медалей сразу. В нобелевском случае возраст лауреата ничем не ограничен, и премия зачастую присуждается за достижения весьма и весьма давние. Возраст математического лауреата ограничен 40 годами, и потому Уайлс, решивший проблему Ферма в возрасте 41 года, медали не получил; вместо медали председатель Филдсовского комитета торжественно вручил ему специальную серебряную табличку. Наконец, хотя медаль и сопровождается некоей суммой, но сумма эта в несколько десятков раз меньше Нобелевской премии. Медали вручают на происходящем раз в четыре года Международном конгрессе математиков. Президент Международного математического союза специально прилетал в Петербург, чтобы уговорить Перельмана посетить конгресс в Мадриде, предстоявший в августе 2006 года, и получить там медаль из рук короля Испании. Перельман остался непреклонен и на конгресс не поехал.
Это был первый случай отказа от филдсовской медали. Проблемы и даже скандалы, сопровождавшие процедуры присуждения и вручения филдсовских медалей, возникали и раньше. Так, по причине Мировой войны не было ни конгрессов, ни присуждений в промежутке между 1936 и 1950 годами (в 1936 году в Осло прошёл последний предвоенный Международный конгресс математиков, а в 1950 году в Кембридже, что в Массачусетсе, — первый послевоенный). Все последующие причины были порождены советскими властями. Например, конгресс в Варшаве, намеченный на 1982 год, был перенесён на август 1983 года из-за объявленного в Польше военного положения. В 1966 году французский математик Александр Гротендик, один из крупнейших математиков XX века, в знак протеста против советской политики в Восточной Европе не приехал в Москву на очередной конгресс, где ему должны были вручить медаль. Церемония вручения проходила в Кремле, во Дворце съездов; вручавший медали президент Академии наук М. В. Келдыш скороговоркой огласил список лауреатов и всех чохом пригласил на сцену для получения медалей; кто есть ху, понять из зала было невозможно. В 1970 и в 1978 годах конгрессы состоялись, соответственно, в Ницце и в Хельсинки. На них должны были получить свои медали два математика из СССР: в Ницце — Сергей Петрович Новиков (родился в 1938 году; кстати, племянник того самого Келдыша), а в Хельсинки — Григорий Александрович Маргулис (родился в 1946 году). Их поездки были признаны, по советской бюрократической терминологии, “нецелесообразными”, а сами они не были выпущены за пределы СССР. Маргулис был тогда кандидатом наук, и в “Московском комсомольце” (едва ли не единственном издании, откликнувшемся на присуждение ему высшей математической награды) появилась статья с замечательной фразой: “и... [даже] докторская диссертация на подходе”. Владимир Игоревич Арнольд был номинирован на медаль Филдса 1974 году. Далее — изложение рассказа самого Арнольда; надеюсь, что помню его правильно. Всё было на мази, Филдсовский комитет рекомендовал присудить Арнольду медаль. Окончательное решение должен был принять высший орган Международного математического союза — его исполнительный комитет. В 1971 — 1974 годах вице-президентом Исполнительного комитета был один из крупнейших советских (да и мировых) математиков академик Лев Семёнович Понтрягин. Накануне своей поездки на заседание исполкома Понтрягин пригласил Арнольда к себе домой на обед и на беседу о его, Арнольда, работах. Как Понтрягин сообщил Арнольду, он получил задание не допустить присуждение тому филдсовской медали. В случае, если исполком с этим не согласится и всё же присудит Арнольду медаль, Понтрягин был уполномочен пригрозить неприездом советской делегации в Ванкувер на очередной Международный конгресс математиков, а то и выходом СССР из Международного математического союза. Но чтобы суждения Понтрягина о работах Арнольда звучали убедительно, он, Понтрягин, по его словам, должен очень хорошо их знать. Поэтому он и пригласил Арнольда, чтобы тот подробно рассказал ему о своих работах. Что Арнольд и сделал. По словам Арнольда, задаваемые ему Понтрягиным вопросы были весьма содержательны, беседа с ним — интересна, а обед — хорош. Не знаю, пришлось ли Понтрягину оглашать свою угрозу, но только филдсовскую медаль Арнольд тогда не получил — и было выдано две медали вместо намечавшихся трёх. К следующему присуждению медалей родившийся в 1937 году Арнольд исчерпал возрастной лимит. В 1995 году Арнольд уже сам стал вице-президентом, и тогда он узнал, что в 1974 году на членов исполкома большое впечатление произвела глубина знакомства Понтрягина с работами Арнольда.
Проблема, которую решил Перельман, состоит в требовании доказать гипотезу, выдвинутую в 1904 году великим французским математиком Анри Пуанкаре (1854 — 1912) и носящую его имя. О роли Пуанкаре в математике трудно сказать лучше, чем это сделано в энциклопедии: “Труды Пуанкаре в области математики, с одной стороны, завершают классическое направление, а с другой — открывают пути к развитию новой математики, где наряду с количественными соотношениями устанавливаются факты, имеющие качественный характер” (БСЭ, изд. 3-е, т. 2).
Гипотеза Пуанкаре как раз и имеет качественный характер — как и вся та область математики (а именно топология), к которой она относится и в создании которой Пуанкаре принял решающее участие.
На современном языке гипотеза Пуанкаре звучит так:
В следующих абзацах мы постараемся хотя бы частично и очень приблизительно разъяснить смысл этой устрашающей словесной формулы.