взаимодействие процессоров — это большие накладные расходы. Попросту говоря, два процессора работают не в два раза быстрее, чем один, а, скажем, в 1,8 раза. Причем чем процессоров больше, тем прирост будет менее значительным. То есть здесь тоже ясно виден предел. Но пока еще есть куда расти.
Зачем нам нужны все более быстрые и мощные компьютеры? Нельзя ли ограничиться теми, что есть? Ответ однозначный: даже в среднесрочной перспективе уже нельзя. Это связано с лавинообразным ростом количества цифровой информации и количества пользователей и производителей этой информации. Буквально шесть лет назад, в феврале 2005 года, когда появился Youtube, никто не подозревал, что количество видеоинформации будет расти с такой поразительной скоростью. И это только небольшая часть цифровой информации, которая создается и передается по глобальной сети. Хотя количество людей на Земле сравнительно невелико, количество устройств и сервисов, использующих цифровую информацию, ничем не ограничено. Если сегодня перестать наращивать цифровые мощности, встанет Сеть. Последствия могут быть катастрофическими. Но это только одна из проблем. Мы ведь хотим продолжать теми же темпами (а хотелось бы и побыстрее) познавать и конструировать природу, в частности, попытаться конструировать работу мозга, а без взрывного роста вычислительной мощности это невозможно.
В 1982 году Ричард Фейнман опубликовал статью [8] , в которой предложил использовать принципиально новый физический принцип для вычислительных систем. Эту статью считают началом квантовых компьютеров.
Ричард Фейнман, анализируя проблему моделирования квантовых явлений, пришел к выводу, что моделирование таких явлений на реальных компьютерах при ограничении времени практически невозможно и не будет возможно в обозримой перспективе. Но вместо того чтобы считать трудность обработки квантовых явлений препятствием, Фейнман счел ее новой возможностью. Действительно, чтобы узнать исход эксперимента, необходимо выполнить невообразимо много вычислений. Но если мы поставим эксперимент, то сам факт его проведения и измерения его результатов будет равносилен выполнению сложного вычисления. То есть вместо того, чтобы
Если мы вернемся к весам и мальчику Бобу, то увидим полную аналогию. Классический компьютер не умеет моделировать квантовую систему. Но он может подготовить входные данные — «посчитать палочки». Затем мы запустим квантовый эксперимент и с помощью классического устройства зарегистрируем результат — «посмотрим на показатель весов».
Идея Фейнмана была только наброском. Первые решения, которые позволили приблизиться к реализации квантового компьютера, были получены Дэвидом Дойчем во второй половине 80-х. Но и они имели чисто теоретический характер.
Настоящий интерес квантовые компьютеры вызвали, когда было показано, что с их помощью (если бы они существовали) можно было бы очень быстро решить задачу факторизации, то есть взломать шифры с открытым ключом.
Трудности, которые стоят перед учеными, очень велики. Профессор Ожигов, один из ведущих специалистов по квантовым вычислениям, считает, что трудности эти сравнимы с решением проблем, связанных с межпланетными перелетами.
Не имея возможности подробно анализировать принципы квантовых вычислений и их физические реализации, я тем не менее попробую хотя бы контурно обрисовать те проблемы, которые стоят перед учеными, работающими в этой области.
Источник этих проблем заключен в тех же квантовых свойствах материи, которые и обеспечивают огромный прирост быстродействия квантового компьютера по сравнению с классическим.
Классический компьютер работает последовательно: по двум числам (битам), полученным на выходе, он однозначно определяет их сумму, передает ее пользователю и переходит к сложению следующей пары чисел. Чтобы сложить две пары чисел, потребуется два такта процессора. Так работает любое классическое вычислительное устройство — очевидна полная аналогия с весами, с помощью которых складывал числа мальчик Боб.
Квантовый компьютер работает не с битами, а с так называемыми кубитами; это могут быть частицы или системы, пребывающие в двух квантовых состояниях, — одно соответствует единице, другое — нулю. Физически это может быть значение спина, или направление поляризации, или какое-то другое квантовое наблюдаемое.
Если классический процессор в каждый момент времени находится ровно в одном состоянии (т. е. все биты, с которыми он работает, имеют значение либо нуль, либо единица), то квантовый процессор находится в так называемой