яйцеклетки».
Чтобы предотвратить слияние мужских хромосом спермы с женскими хромосомами яйцеклетки (в результате чего получится нормальное оплодотворение, а не клонирование), требуется непосредственно перед слиянием хирургически удалить один набор хромосом, а оставшийся набор заставить удвоиться. Если для этой цели взять хромосомы спермы, то в результате может получиться либо мужская, либо женская особь, а если оставить и удвоить хромосомы яйцеклетки, то результатом будет женская особь. Пока Маркерт продолжал свои опыты с этой методикой переноса ядер, двое других учёных — Питер С. Хопп и Карл Илменси в 1977 году сообщили, что в Лаборатории Джексона в Бар-Харбор появились на свет семь мышат, имевшие лишь «одного родителя». Однако этот процесс точнее было бы назвать партеногенезом, или «непорочным зачатием», а не клонированием. В данном эксперименте учёные заставили хромосомы яйцеклетки удвоиться, в результате чего получилась яйцеклетка с полным набором хромосом. После нескольких циклов деления эта оплодотворившая саму себя яйцеклетка была имплантирована в матку самки мыши. Примечательно, что реципиентом была другая самка, а не та, у которой брали яйцеклетку.
Большой шум поднялся в начале 1978 года после выхода в свет книги со следующим сюжетом: чудаковатый американский миллионер, преследуемый страхом смерти, решил обрести бессмертие при помощи клонирования. В книге утверждалось, что ядро взятой у миллионера клетки было имплантировано в яйцеклетку женщины, которая выносила и родила полноценного и здорового мальчика. Эта история, хотя и написанная в Документальной манере, была воспринята с недоверием. Скептицизм научного сообщества основывался не на невозможности такого события — все признавали, что когда-нибудь это станет возможным, — а на сомнениях в том, что такой успех может быть достигнут группой неизвестных учёных где-то на островах Карибского моря, в то время как остальным исследователям удалось добиться лишь партеногенеза у мыши. Кроме того, были серьёзные сомнения в успешном клонировании взрослого мужчины, поскольку данные экспериментов указывали на то, что чем старше клетка донора, тем меньше шансов на успех.
В памяти человечества были ещё свежи ужасы, которые принесла народам нацистская Германия во имя «высшей расы», и поэтому даже вероятность клонирования избранных людей с неблаговидными целями стала достаточным основанием, чтобы снизить интерес к такого рода генетическим манипуляциям. Вопрос «Должен ли человек подменять Бога?» — был вытеснен вопросом «Может ли наука заменить мужа?» Результатом этого процесса стало появление «детей из пробирки».
Исследования, проведённые в Университете Техаса, показали, что яйцеклетку млекопитающего (в данном случае бабуина) можно в течение пяти дней после оплодотворения извлечь из матки и имплантировать в матку другой самки, результатом чего становится беременность и роды. Другие исследователи разработали методы извлечения яйцеклеток мелких млекопитающих и оплодотворения их «в пробирке». Эти два процесса, пересадка эмбриона и оплодотворение в пробирке, стали основой события, вошедшего в историю медицины. В июле 1978 года в Олдхеме на северо-востоке Англии появилась на свет Луиза Браун. Первый «ребёнок из пробирки», она была зачата не родителями, а в пробирке при помощи методики, разработанной Патриком Стептоу и Робертом Эдвардсом. За девять месяцев до рождения девочки они использовали специальный инструмент, чтобы извлечь созревшую яйцеклетку из яичника миссис Браун. Поместив яйцеклетку в питательный раствор, учёные «смешали» её — именно так выразился доктор Эдварде — со спермой мужа миссис Браун. После успешного оплодотворения яйцеклетка была помещена в чашку с другими питательными веществами, где она начала делиться. Через пятьдесят часов клеток было уже восемь, и на этом этапе эмбрион был имплантирован в матку миссис Браун. Под наблюдением и с помощью врачей эмбрион успешно развивался, и в конце концов беременность завершилась кесаревым сечением. У супружеской пары, неспособной иметь детей из-за дефекта фаллопиевых труб жены, теперь была нормальная дочь.
«У нас девочка, и она просто замечательная!» — воскликнула гинеколог, делавшая кесарево сечение, и подняла ребёнка вверх.
«Это я сотворила, мои создали руки!» — так воскликнула Нинту, извлекая Адама при помощи кесарева сечения за несколько тысяч лет до этого…
Напоминанием о долгом пути «проб и ошибок», который прошли Энки и Нинту, может служить тот факт что сенсационное появление «малышки Луизы», о котором взахлёб писала пресса (рис. 55), стало результатом двенадцатилетнего процесса проб и ошибок, в результате которого появлялись неполноценные зародыши и даже младенцы. Вне всякого сомнения, учёные и врачи не знали, что их открытие, заключавшееся в том, что важной составляющей успеха было добавление сыворотки крови к питательным веществам и сперме, стало повторением того пути, которым прошли Энки и Нинту…

Несмотря на то, что первый успех вселил надежду в страдающих от бесплодия женщин (кроме того, он открыл дорогу суррогатному материнству, методике заморозки эмбрионов, банкам спермы и новым юридическим проблемам), эта методика была лишь дальним родственником процесса, осуществлённого Энки и Нинту. Тем не менее, для неё характерны аспекты, о которых повествуют древние тексты — так, например, учёные, занимавшиеся пересадкой клеточных ядер, обнаружили, что донор-мужчина должен быть молод, в полном соответствии с шумерскими текстами.
Самая существенная разница между получением «детей из пробирки» и процессом, описанным в древних текстах, заключается в следующем: в первом случае имитируется естественный процесс размножения, когда женская яйцеклетка оплодотворяется мужской спермой, а затем развивается в матке. В случае с созданием первого человека смешивался генетический материал двух разных (хотя и родственных) видов, в результате чего на свет появилось новое существо, нечто среднее между его «родителями».
В последние годы современная наука достигла серьёзных успехов в подобных генетических манипуляциях. При помощи постоянно совершенствующегося оборудования, компьютеров и всё более миниатюрных инструментов учёные научились «читать» генетический код живых организмов, в том числе и человека. Стало возможным не только определить составляющие ДНК (A-G-C-T) и буквы генетического алфавита (A-G-C-U), но и распознавать трехбуквенные «слова» генетического кода (например, AGG, ААТ, GCC, GGG — и так далее) и нити ДНК, образующие гены, каждый из которых выполняет конкретную функцию — например, определяет цвет глаз, управляет ростом или передаёт наследственное заболевание. Учёные также выяснили, что некоторые «слова» кода просто являются командами на запуск и остановку процесса репликации. Постепенно генетики научились изображать генетический код на экране компьютера и распознавать в распечатках (рис. 56) команды «стоп» и «пуск». Следующий шаг — скрупулёзно изучить функцию каждого сегмента, или гена — у простейшей бактерии

Несмотря на все сложности, учёные при помощи энзимов научились разрезать ДНК в нужных местах, удалять «предложения», составляющие ген, и даже вставлять в ДНК чужеродные гены. При помощи такой технологии можно удалить нежелательный ген (например, вызывающий болезнь) или вставить нужный (например, отвечающий за выработку гормона роста). Успехи в понимании этой химической основы жизни и в управлении ей в 1980 году были отмечены Нобелевской премией, которую присудили Уолтеру Гилберту из Гарварда и Фредерику Санджеру из Кембриджского университета за разработку методов быстрой расшифровки больших сегментов ДНК, а также Полу Бергу из Стэндфордского университета за исследовательскую работу в области «сплайсинга генов». По-другому этот метод называется «технологией рекомбинантной ДНК», поскольку после сплайсинга ДНК рекомбинирует вместе с новыми сегментами.
Эти достижения открыли возможности для генной терапии, то есть удаления из клеток человека или