Теперь мы обсудим ту же тему с широких позиций философии научного познания. Уже давно ученых мучает проблема вывода, известная также как проблема индукции. Точные науки страдают от нее меньше, чем общественные, в частности экономика, а больше всего — финансовая экономика. Почему? Потому что в ней сильна роль случая. Нигде проблема индукции не актуальна так, как в мире трейдинга, и нигде она так не игнорируется!
Черный лебедь
В своем «Трактате о человеческой природе» шотландский философ Дэвид Юм сформулировал такую мысль (английский мыслитель и экономист Джон Стюарт Милль перефразировал ее в уже известную «проблему черного лебедя»):
Юма раздражал тот факт, что наука в его дни (XVIII век) благодаря Фрэнсису Бэкону качнулась от схоластики, полностью основанной на дедуктивном мышлении (без акцента на наблюдении реального мира), к чрезмерно наивному и неструктурированному эмпиризму. Бэкон возражал против «плетения паутины обучения» при отсутствии практических результатов (когда наука становится похожей на теологию). Благодаря Бэкону наука сделала шаг в сторону эмпирических наблюдений. Проблема состоит в том, что без правильного метода эмпирические наблюдения могут повести нас по ложному пути. Юм пытался предостеречь от такого знания и объяснить необходимость определенной строгости при сборе и интерпретации данных — то, что называется эпистемологией (от греческого слова
Нидерхоффер
Биография статистика и бизнесмена Виктора Нидерхоффера одновременно печальна и интересна, поскольку демонстрирует, как трудно в одном человеке ужиться крайнему эмпиризму и логике — чистый эмпиризм непременно приводит к одураченносги случайностью. Я привожу его пример потому, что Виктор Нидерхоффер, как и Фрэнсис Бэкон, выступал в университете Чикаго против паутины обучения и религии эффективности рынка. Это было в 1960-х годах, когда указанные взгляды были на пике. По контрасту со схоластикой финансовых теоретиков, он искал аномалии в данных и находил их. Он пришел также к выводу о бесполезности новостей и показал, что чтение газет не дает читателю предсказуемых преимуществ. Он получал свои знания о мире из данных о прошлом, очищенных от предубеждений, комментариев и вымысла. С тех пор расцвела целая отрасль таких игроков, их называют статистическими арбитражерами; некоторые наиболее успешные из них были вначале его учениками. История Нидерхоффера показывает нам, что эмпиризм нужно отделять от методологии.
В центре его
может быть проверено путем измерения расстояния между местом аварии и местом жительства водителя (если, скажем, 20 % аварий происходят в радиусе двенадцати миль). Однако нужно быть осторожными в интерпретации. Наивный читатель, увидев этот результат, скажет, что вероятность попасть в аварию больше, если вы едете по своему району, чем где-то далеко от него. Это типичный пример наивного эмпиризма. Почему? Потому что аварии могут случаться неподалеку от дома просто из-за того, что люди чаще оказываются в автомобиле именно там (20 % времени, проведенного за рулем, они находятся в радиусе двенадцати миль от места, где живут).
Но у наивного эмпиризма есть и более неприятный аспект. Я могу использовать данные, чтобы опровергнуть высказывание, но никогда — чтобы доказать его. Я могу воспользоваться историей, чтобы доказать ложность гипотезы, но никогда — чтобы подтвердить ее. Например, утверждение
может быть проверено, но является абсолютно бессмысленным на поверку. Я могу количественно опровергнуть его, найдя контрпримеры, но я не могу согласиться с ним только потому, что в прошлом рынок никогда не падал на 20 % за три месяца (нельзя просто совершить логический скачок от «никогда не падал» к «никогда не падает»). Выборки могут быть неподходящими; рынки могут меняться; у нас может быть недостаточно исторических данных.
С меньшими опасениями вы можете использовать информацию, чтобы опровергнуть, нежели чтобы подтвердить гипотезы. Почему? Рассмотрим следующие высказывания.
Высказывание А:
Высказывание Б:
Я не могу логически обосновать высказывание А вне зависимости от того, как много белых лебедей я мог последовательно наблюдать в жизни и еще увижу в будущем (если, конечно, я лишен привилегии гарантированно увидеть всех возможных лебедей). Однако можно доказать высказывание Б, найдя один- единственный контрпример. На самом деле высказывание А было опровергнуто после открытия Австралии, где обнаружили
Я сказал, что люди редко проверяют проверяемые высказывания. Впрочем, это даже лучше для тех, кто не может справиться с последствиями такой проверки. Следующее индуктивное высказывание иллюстрирует проблему прошлых данных буквально, без привлечения методологии или логики.
Я только что закончил всестороннее статистическое исследование жизни президента Буша. В течение пятидесяти восьми лет в ходе примерно 21 тыс. наблюдений он ни разу не умер. Следовательно, я могу провозгласить его бессмертным с высокой степенью статистической значимости.
Писали, что Нидерхоффер начал заикаться после того, как продал непокрытые опционы, основываясь на проверке данных и исходя из предположения, что все виденное им в прошлом было точным обобщением всего, что может произойти в будущем. Он положился на утверждение типа «рынок никогда так не делал в прошлом» и продал опционы «пут», которые приносили небольшую прибыль, если утверждение было истинным, и большие убытки в случае его ложности. Когда он «лопнул», результат почти двадцати лет работы был перечеркнут единственным событием, длившимся всего несколько минут.
Подобные исторические высказывания грешат и другой логической ошибкой: нередко, когда происходит какое-то крупное событие, вы слышите: «Такого не случалось раньше», — то есть для того,