свойства этого пространства. Наш эталон не хочет нам льстиво показывать гладкость всего пространства; это не основание, чтобы отвергнуть его за верную службу, если только с самого начала мы сочли его заслуживающим доверия; в противном же случае, тоже с самого начала, он подлежал отводу.
V
Подобные же рассуждения должны быть повторены и о всех прочих истолкованиях прямой, а также и вообще — всех геометрических образов. Но в особенности это относится к определению прямой как кратчайшего расстояния.
Мерою[57] пространственного расстояния служит работа, затрачиваемая на преодоление этого расстояния. Если бы действительность не представляла никаких препятствий к преодолению расстояний, и мы могли бы перемещаться без какого бы то ни было усилия, хотя бы внутреннего, из места в место, то в нас не возникало бы и мысли о расстоянии, и мы сознавали бы отдельные образы действительности слитными. Тогда не было бы, естественно, и меры расстояния. Затраченная на преодоление пространства работа может быть различна и потому — различно измеряема. Это может быть механическая работа, или тот или иной физический процесс, или, наконец, какой?либо вид психофизической работы. И измерять се мы можем в одних случаях физическими приборами, в других — непосредственным чувством затраченных усилий, т. е. —усталости. Нет надобности, чтобы пространство было преодолено непременно прохождением своими ногами или, в малых размерах, продвижением руки, головы и т. д.; хотя, конечно, по–настоящему сознано только то пространство, которое мы прошли пешком. Возможны и иные затраты усилия на преодоление пространства, например, усилие внимания при мелькающих видах в окне вагона, полусознательное усвоение ритма стуков и качаний при тех же условиях, даже затрата на борьбу с овладевающим чувством опасности и т. д. и т. д. Но какаято затрата есть необходимое условие, без которого расстояние оказывается неоцененным, а пространство — несознанным. Это условие, может быть, осуществится экономическим усилием — оплатою билета, посылки или груза; но и тут сознание пространства не дается даром. Даже при мечте, когда фантазия блуждает, где ей вздумается, мы делаем некоторое усилие представить себе, хотя бы и очень поверхностно, какие?то пути наших перелетов, и на это тратимся: и от мечтаний устают. Но ничтожности потребовавшейся тут работы соответствует смутное и неотчетливое сознание преодоленных пространств: в мечте почти нет речи о расстояниях именно потому, что почти не затрачена работа на их преодоление, и тогда далекое, в том или другом смысле, от нашего местопребывания представляется надвигающимся на него и почти с ним сливающимся.
VI
Следовательно, если прямая определяется как кратчайшее расстояние, то это определение само по себе не имеет никакого смысла, покуда не установлено дополнительно, как именно должно измеряться расстояние. А когда это дополнительное определение сделано, мы логически вынуждены уже держаться установленного приема и не подменять его каким?либо другим, как якобы более правильным (об этом нужно было подумать с самого начала) и тем более не проверять прямизны линии, коль скоро они признанным приемом оцениваются как кратчайшие, — не проверять этой прямизны инородными эталонами вроде жезла, луча и проч. Ведь если мы, незаконно, станем вводить наряду с чисто геометрическим определением предположение о каких?либо физических или психических факторах, якобы мешающих точности геометрии, то мы нарушаем самую суть геометрии как таковой и говорим о физике, психофизиологии и проч., которые сами не могут быть строимы
VII
Представим себе, что мы живем в среде, изборожденной потоками, не имеем под ногами твердой почвы. Так было бы, если бы мы были мошками в атмосфере, где господствуют постоянные ветры и вихри. Так же было бы, если бы мы были рыбами в широкой и достаточно быстрой реке. Предположим далее для простоты, что у нас нет зрения, или что среда наша непрозрачна или не освещена. Если бы теперь мы захотели строить геометрию, то в основу определения прямой как кратчайшего расстояния мы положили бы работу, измеряемую либо физическими приборами, либо чувством усталости, которую нам необходимо затратить, чтобы проплыть от некоторого места в среде к другому месту. Тот путь, на котором наша усталость была бы наименьшая, и был бы признан нами за прямую. Это не была бы прямая евклидовской геометрии. Но наряду с таким определением могло бы возникнуть и другое, а именно: определение прямой как пути скорейшей переправы от места к другому месту. Нет оснований загодя ждать, чтобы пути по этим обоим определениям всегда совпадали, особенно если бы течение и вихри нашей среды не были установившимися. Такое несовпадение путей по тому и другому определению, может быть, побудило бы геометра, нетвердого в своей конституции, привлечь к проверке новые определения прямой и новые способы проверки прямизны. Но все такие способы сами подлежали бы возмущающему действию среды: движущееся по инерции материальное тельце относилось бы с прямолинейного по Евклиду пути в сторону, натянутая нить или цепь провисала бы под напором течения, жезл прогибался бы, световой луч тоже шел не по евклидовской прямой вследствие рефракции различно уплотненных струй жидкой среды и вследствие самого движения этой среды. Все пути, первоначально определенные как прямые, деформировались бы, и притом — по–разному, расходясь между собою. Спрашивается, где же именно прямая и какою из этих предполагаемых прямых руководиться при поверке прямизны, если только мы решимся изменить формально установленному определению прямой как одного, непременно
Но, скажут, есть все?таки
Не геометр, а уже физик, и притом стоящий на твердой почве, может, конечно, разделить рыбью неевклидовскую геометрию на теорию пространства по Евклиду и на теорию гидродинамического поля; но геометру из той, текущей, среды, такое разделение представится крайне искусственным, и он, в свой черед, разделит евклидовскую геометрию своего коллеги на свою собственную, неевклидовскую геометрию и на предполагаемое силовое поле, может быть, тоже течение как некоторой мировой жидкости; этим силовым полем будет достаточно объяснено, почему принятая на земле геометрия
VIII
Свойства действительности распределяются между пространством и вещами. Они могут быть перекладываемы в большей или меньшей степени с пространства на вещи или, наоборот — с вещей на пространство. Но как бы мы их ни перекладывали,