ТЦТ, ТЦЦ, ТЦА, ТЦГ, АГТ, АГЦ | |
Треонин | АЦТ, АЦЦ, АЦА, АЦГ |
Аспарагиновая кислота | ГАТ, ГАЦ |
Глутаминовая кислота | ГАА, ГАГ |
Лизин | ААА, ААГ |
Аргинин | ЦГТ, ЦГЦ, ЦГА, ЦГГ, АГА, АГГ |
Аспарагин | ААТ, ААЦ |
Глутамин | ЦАА, ЦАГ |
Цистеин | ТГТ, ТГЦ |
Метионин | АТГ |
Фенилаланин | ТТТ, ТТЦ |
Тирозин | ТАТ, ТАЦ |
Триптофан | ТГГ |
Гистидин | ЦАТ, ЦАЦ |
Пролин | ЦЦТ, ЦЦЦ, ЦЦА, ЦЦГ |
'Нонсенс' (бессмысленные колоны) | ТАА, ТАГ, ТГА |
Итак, генетическая информация каждого организма состоит из закодированной в его ДНК комбинации программ, которые и управляют синтезом большого числа ферментов и других белковых молекул. Этим основным положением обусловлены все другие особенности жизнедеятельности организма: его развитие, структура, тип обмена веществ и поведение, так как все они генетически предопределены. Таким образом, нуклеиновые кислоты и белки образуют сцепленную, взаимозависимую систему: синтез молекул обоих типов зависит от активности множества ферментов, для синтеза которых необходима информация, содержащаяся в ДНК. Именно в такой самоподдерживающейся генетической системе и закодированы все уникальные свойства живой материи.
Связь между генами и белками весьма непроста, но вполне понятна. Чтобы выжить, организм должен синтезировать великое множество разнообразных типов белков. Но белковые молекулы — это огромные и чрезвычайно упорядоченные структуры, которые построены из отдельных аминокислот, и если бы каждому организму приходилось заново выбирать, в какой последовательности соединить аминокислоты, чтобы наилучшим образом синтезировать необходимые белки, он бы не смог выжить. Поэтому информация — необходимое для жизни и незаменимое генетическое наследство — должна передаваться от родителей к потомкам. Если бы нужные последовательности аминокислот могли быть скопированы с уже существующих белковых молекул, то нуклеиновые кислоты оказались бы ненужными. Однако по своему строению белковые молекулы не годятся для копирования. В то же время последовательность нуклеотидов, образующих полинуклеотидные молекулы, может быть легко скопирована. Поэтому программы 'сборки' белковых молекул закодированы в нуклеиновых кислотах, и именно они копируются в каждом поколении и передаются по наследству.
Разумеется, сами по себе белки и нуклеиновые кислоты еще не образуют организма. Чтобы ферменты могли синтезировать все новые молекулы нуклеиновых кислот, ферментов и других веществ, необходимых для построения организма, им нужно исходное сырье, а также источник энергии и растворитель. Растворитель (вода) фактически представляет собой основной компонент большинства живых существ. (Более подробно об источниках энергии и воде мы будем говорить дальше.) Имея в своем распоряжении исходное сырье, энергию и воду, генетическая система получает возможность сформировать организм, включая все те структуры, которые сами по себе лишены генетических свойств, например мембраны, окружающие каждую клетку.
Помимо этих основных условий для создания организма в генетической информации должна содержаться программа, определяющая порядок 'работы'. Ведь тысячи генов, в которых записана программа построения живой системы, не существуют все одновременно в активном состоянии. В ходе сложных стереотипных изменений, составляющих основу индивидуального развития организмов, особенно у многоклеточных растений и животных, различные гены активируются не одновременно и в разных клетках. Рассмотрим простой пример. Гемоглобин вырабатывают только определенные клетки организма, и гены, несущие информацию, необходимую для синтеза двух аминокислотных цепей, образующих этот белок, активны только в тех клетках, которые производят гемоглобин, хотя присутствуют во всех. Более