создавать скелеты гигантских трехмерных структур определенной архитектуры, подобные белкам и нуклеиновым кислотам.

Другая важная особенность соединений углерода — их химическая инертность. В условиях, господствующих на земной поверхности, органические соединения термодинамически нестабильны. Они не находятся в равновесии с окружающей средой, а подобно камню, лежащему на склоне горы, под действием любого достаточно сильного внешнего толчка 'скатываются' вниз к равновесному состоянию. Так, при нагревании или в присутствии катализаторов активированные органические вещества соединяются с кислородом атмосферы: многие органические соединения взаимодействуют также с водой или испытывают ряд других изменений. Но, несмотря на свою термодинамическую нестабильность, соединения углерода химически инертны, т. е. с трудом вступают в реакции.

Таблица 2. Элементарный состав белков и ДНК (число атомов на 100)

Элемент В среднем по 314 белкам[4] ДНК человека
Углерод (С) 3.16 29.8
Водород (Н)[5] 49.6 37.5
Кислород (0) 9.7 18.3
Азот (N) 8.8 11.3
Сера (S) 0.3
Фосфор (Р) 3.1

Достижению термодинамического равновесия препятствует то обстоятельство, что четырехвалентные атомы углерода обладают слабой реакционной способностью, т. е. если воспользоваться прежней аналогией, камень, лежащий на склоне горы, находится в этом случае в глубокой яме. Подобная инертность, обусловленная электронной структурой атомов углерода, и обеспечивает образование молекулярных систем чрезвычайно сложной структуры, но вместе с тем очень стабильных. В процессе обмена веществ ферменты в соответствующий момент соединяются с молекулами и, видоизменяя их, обеспечивают тем самым протекание необходимых реакций.

Благодаря этим уникальным свойствам углерод служит основным материалом для построения диетических систем. Эти же свойства объясняют способность углерода создавать гораздо больше соединений, чем все другие элементы вместе взятые. В силу тех же своих особенностей углерод, составляющий лишь 0.5 % от общего состава земной коры, является элементом, более характерным для живой материи, чем, например, близкий к нему но химическим свойствам кремний. На земной поверхности на каждый атом углерода приходится 25 атомов кремния, однако роль кремния в биохимии очень незначительна. Как и углерод, кремний образует четыре ковалентные связи, но сила этих связей различна: связь кремний-кремний слабая, кремний-кислород сильная. По этой причине кремний существует на Земле и виде силикатов инертных соединений, в больших молекулах которых каждый атом кремния связан с четырьмя атомами кислорода, а соединения, состоящие из цепочек. содержащих шесть и более атомов кремния, вообще не обнаружены. Это резко контрастирует с разнообразием больших структур, основанных на углероде. Соединения кремния и водорода, так называемые силаны (или кремневодороды), также принципиально отличаются от их углеродсодержащих гомологов (углеводородов). В то время как углеводороды инертны, силаны загораются при простом контакте с воздухом, разрушаются в воде. Они настолько реакционноспособны, что, как говорят, самым необходимым качеством химика, занимающегося синтезом наиболее сложных по строению силанов, является мужество. И опять же все эти особенности силанов обусловлены электронной структурой атомов кремния: именно благодаря своим свойствам кремний является основным компонентом горных пород, а не живой материи.

Если говорить о построении сложных молекул, то свойства углерода настолько уникальны, что возможность образования генетических систем на основе других элементов серьезно даже не обсуждается. Отмечалось, что цепочки, образованные без участия углерода (например, состоящие из чередующихся атомов кремния и кислорода: — Si-О-Si-О-), потенциально также способны к хранению информации, но ведь это только одна из функций, которые должна выполнять живая система. В числе других ее функций — способность к мутациям, репликациям и использованию заложенной в ней информации. И пока не удастся доказать, что подобные функции может выполнять какой-то другой элемент, нам остается рассматривать углерод как единственный в своем роде. Это, конечно, не означает, что генетические системы внеземных форм жизни должны быть химически идентичны нашим, однако построены они должны быть обязательно на основе соединений углерода. Как мы увидим, с точки зрения возможности существования жизни на других планетах это заключение имеет далеко идущие последствия.

Возможно, кого-то разочарует и даже приведет в уныние то обстоятельство, что самый надежный путь к обнаружению жизни в другом мире это поиск сложных химических систем, в основе которых лежит углерод. Ведь это то же самое, что мы имеем на Земле. Разве нет надежды найти экзотические существа, построенные, например, на основе ванадия, молибдена или празеодима? По-моему, нет. Названные элементы, во-первых, химически непригодны в качестве основы жизни, а во-вторых, редко встречаются в природе, тогда как углерод — один из наиболее распространенных во Вселенной элементов. В той мере, в какой случайность может вторгаться в происхождение жизни, более вероятно, что при прочих равных условиях в этом процессе скорее всего должны участвовать более распространенные в природе элементы: однако об этом речь пойдет в последующих двух главах. Структуры, возникшие на основе других элементов, могут оказаться в таком случае в неравных условиях. Благодаря своей 'разносторонности' атом углерода предпочтителен и как основа для образования растворов — даже самых экзотических, — что связано с возможностью жизни на других планетах.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×