warfare (ASUW), and land attack. Its structure is laid out below:
As the table shows, the 'CV' air wing had a primary emphasis on defense against air and submarine attack. It could also dish out a great deal of punishment against enemy naval forces, though its ability to strike land targets was more limited. It was this air wing structure that John Lehman tried to flesh out with his aircraft procurement plan in the 1980's. But because of the fallout from the A-12 fiasco, the aircraft necessary to fill out sixteen such units were never purchased, and the fleet made frequent draws on Marine F/A-18 Hornet and EA-6B Prowler squadrons in order to sustain the heavy deployment schedule of the late Cold War years.
After the end of the Cold War, the following air wing organization was created, and is in use today around the fleet:
This CVW structure reflects a number of realities, most importantly the fact that there will only be eleven CVWs (ten active-duty and one reserve) for twelve carriers, greatly reducing the number of new aircraft required to sustain carrier aviation into the 21st century. Also, this 1990's CVW has a new orientation: to project precision- striking power onto targets ashore. Both the F-14's and F/A-18's are equipped with precision-targeting and reconnaissance systems, as well as a wide variety of Desert Storm-era PGMs. All of these systems give the new CVWs much more punch than before, and while the number of fighter/attack aircraft has been greatly reduced, this new air wing actually can strike twice the number of precision targets that a Cold War CVW could hit. It will acquire even greater power when the new generation of GPS-guided PGMs arrives over the next few years.
The next big move will occur in the early years of the 21 st century. Starting somewhere around 2001, the Navy will commission its first combat squadron of F/A-18E/F Super Hornets, replacing the F-14 Tomcat squadron in CVWs. The Navy will then be able to rapidly retire the elderly F-14As, some of which will be over three decades old when they head to the boneyard. During this same period, the SH-60B/F and HH-60G fleet will be remanufactured into a common variant known as the SH-60R. The surviving H-60 airframes will then be consolidated into a single version that can be used either on carriers or escorts. The Navy will also buy a number of CH-60 airframes, which will take over from the old UH-46 Sea Knight in the Vertical Replenishment (VERTREP) mission aboard supply ships, as well as the special operations/combat search and rescue (SO/CSAR) mission of the HH-60G.
Despite all these changes, the dominant airframe of this air wing will continue to be late-model F/A-18C Hornets, which will soldier on well into the 21st century. With these changes, the typical CVW of 2001 to 2015 will probably look like this:
Again, the key attribute of this CVW will be striking power against land-based precision targets. However, with a new generation of self-designating, GPS/INS-guided PGMs, it will be able to dish out truly devastating damage to targets afloat or ashore, and in almost any kind of weather.
The final step in the CVW modernization plan is shown below, and will begin to appear around 2011:
This is an air wing that is almost entirely composed of aircraft that now exist only on paper. Even so, it has several clear advantages over earlier CVW structures, including the fact that this projected CVW has just four basic airframes: the JSF, F/A-18E/F, the CSA, and H-60. This means lower operating and maintenance costs as well as a simpler logistics chain. It will also have the Navy's first true stealth strike fighter (the JSF), a new EW/ SEAD aircraft (the proposed EF-18F Electric Hornet), as well as new sea control, ESM, and AEW aircraft based upon the new CSA airframe. This likely will be what will go aboard the new CVX when it is commissioned around 2015. Once all eleven CVWs have their first squadron of JSFs, the Super Hornets will begin to be retired, and eventually there will be four JSF squadrons aboard each carrier with ten aircraft each.
None of this will come cheaply or overnight. Just maintaining the existing fleet of aircraft is expensive, and buying something like two thousand new F/A-18E/F Super Hornets, JSFs, CSA derivatives, and any other major airframe that comes along will cost between $20 and $30 billion. And that's without even beginning to address the spare parts, engines, weapons, and other necessities that these aircraft will consume in their operational lifetimes. Meanwhile, naval aviators will continue to fly the aircraft they've flown for most of their careers. The designs of not a few of these aircraft, in fact, date from before many of the men and women who fly them were born.
Northrop Grumman F-14 Tomcat: King of the Air Wing
You always know when you see an F-14 Tomcat that it is a fighter. It is a big, noisy, powerful brute of an airplane that lacks
The origins of the F-14 lay back in the 1950's when American intelligence agencies identified a growing family of Soviet air-launched cruise missiles as a potential threat to NATO fleet units. Carried to their launch points by heavy bombers, aircraft like the Tu-16 Badger or Tu-95 Bear, they could be launched well outside the range of enemy SAMs and antiaircraft (AAA) guns. Designated by NATO intelligence analysts as AS-1 'Kennel,' AS-2 'Kipper,' AS-3 'Kangaroo,' AS-4 'Kitchen,' AS-5 'Kelt,' and AS-6 'Kingfish,' these long-ranged, radar-guided pilotless jet- or rocket-powered weapons packed enormous ship-killing power. Armed with 1,000-kg/ 2,200-lb warheads (or high-yield nuclear warheads), they were capable of destroying a destroyer or frigate with a single hit. By way of comparison, the single AM-39 Exocet air-to-surface missile (ASM) that sank the British guided-missile destroyer HMS Sheffield (D 80) in 1982 had a warhead just one tenth that size. Since a single large bomber might carry two or three such monster ASMs, finding a way to defend the fleet against them became a high-level priority.
Experience in World War II against Japanese Kamikaze planes (which were essentially manned ASMs) showed that the best way to protect a fleet was to shoot down the missile-carrying enemy bombers before they could launch their missiles. Thus the response to the ASM threat was the accelerated development of extremely long-range air-to-air missiles (AAMs), which could maintain an outer ring in a layered defense system. Any missiles that 'leaked' through the outer ring would then face an inner barrier of patrolling fighters, ship-launched SAMs, and point-defense missiles launched from surface ships. This was supposed to be the U.S. strategy until the end of the Cold War-a scheme that envisioned an extremely high-performance, long-ranged AAM that could be carried by a relatively slow but long-endurance carrier aircraft, the Douglas F6D Missileer. The Missileer would have carried eight long-range Bendix Eagle AAMs, along with powerful airborne radar. The F6Ds would have acted as airborne SAM sites, and would have been placed hundreds of miles ahead of a carrier group to intercept incoming bombers. However, fiscal realities now began to effect the Navy's plans.
The F6D program was canceled in December 1960, mostly due to the fact that it was a single-mission aircraft only for fleet air defense. Even so, the Eagle missile was eventually resurrected as the Hughes AIM-54 Phoenix, which today is carried by the F-14. Already strapped for funds, the Navy decided that its next fighter should do the job of the F6D, as well as provide air superiority and other missions. Then high-level politics stepped in. In