the early 1960's, then-Secretary of Defense Robert MacNamara, frustrated by seemingly endless inter-service rivalries and hoping to save money, tried to force the Air Force and Navy to procure common types of aircraft. Out of this dream came the TFX (Tactical Fighter, Experimental) program-which became the Air Force's F-111 swing- wing bomber. To meet its fighter missions, the Navy was directed to develop a variant of the F-111 that would be suitable for carrier operations. It was expected that it would accomplish its fleet air defense and air-superiority missions with the planned F-111B, which would replace the classic F-4 Phantom II.

The problem was that the 'navalized' F-111B (which was built by Grumman in partnership with General Dynamics, the USAF 'prime' contractor) was just too heavy, fragile, and complex for carrier operations, and its landing speed was too high for a safe landing on a carrier deck. Furthermore, the F-111B, with little maneuverability and thrust from its overworked engines, was not much of a fighter. For all of these reasons, the Navy rejected the F-111B, and the program was scrapped, though not without a fight. In those days, one did not go against a man as powerful as Secretary MacNamara without paying a price. The Navy paid in blood. In a scene reminiscent of the 1940's 'Revolt of the Admirals' a generation earlier, a senior naval aviator, Rear Admiral Tom 'Tomcat' Connelly, sacrificed his own career by standing up to MacNamara in Congressional testimony. He stated flatly in an open session, 'Senator, there is not enough thrust in all of Christendom to make a fighter out of the F-111!' With this legendary remark, the F-111B died, and the F-14 Tomcat was born.

Politics aside, the Navy still had the problem of those Soviet ASM armed bombers to deal with. As if to amplify the problem further, the Russians had deployed a new supersonic swing-wing bomber in the late 1960s that caused a near panic in U.S./NATO defense planners: the Tu-22M Backfire. The eventual answer to the Navy's problem came after a series of fighter studies funded by the Navy and run by Grumman. The plan was to wrap a completely new, state-of-the-art airframe around the basic avionics, weapons, and propulsion package that had been intended for the F-111B (including the Phoenix missile system), and then run a series of product improvements upon the new bird. One of the aircraft's most notable features would be a variable geometry 'swing-wing' design that would allow it to 'redesign' itself in flight. For good slow-speed performance during landing and cruise the wings would be set forward, and be swept back for supersonic dashes.

It was an ambitious design for the late 1960s. The new fighter would not only carry up to six of the massive AIM-54 Phoenix missiles and the AWG-9 radar to guide them, but it would also be a superb dogfighter. In Vietnam the F-4 Phantom II had severe shortcomings during close-in air-to-air engagements. The Phantoms weren't very maneuverable, were easy to see (both big and smoky), and didn't have much range. The new fighter would be very different.

The Request for Proposals went out in 1968, and a number of airframe manufacturers submitted responses to build the new bird. However, with their fighter study and F-111B experience, Grumman had a clear edge, and early in 1969 they won the contract to build what would become known as the F-14. Quickly, Grumman got to work and began to cut metal, and the new bird rapidly came together. The first flight of the F-14A prototype occurred almost a month ahead of schedule, on December 21st, 1970, at Grumman's Calverton plant on Long Island. Though three of the preproduction aircraft were lost in testing (including the prototype on its second flight), the program progressed well. The new fighter moved along on schedule, with the first two fleet squadrons, VF-1 (the 'Wolfpack') and VF-2 (the 'Bounty Hunters'), standing up in 1974. In honor of Admiral Connelly's role in its creation, the Navy named the new bird the 'Tomcat.'[48]

The Tomcat is a two-seat, twin-engined fighter that measures 62 feet, 8 inches/19.1 meters in length. Its height to the tip of the vertical stabilizer is 16 feet/4.88 meters. The maximum wingspan is 64 feet, 1.5 inches/19.54 meters at a minimum sweep angle of 20deg. Minimum wingspan in flight is 38 feet, 2.5 inches/11.65 meters at a maximum flight sweep angle of 68deg. For storage in the cramped confines of the flight hangar decks, the wings can 'oversweep' (only on deck for stowage) to an angle of 75deg, overlapping the horizontal tail surfaces and reducing the span to only 33 feet, 3.5 inches/ 10.15 meters. The Tomcat's empty weight is 40,150 lb/18,212 kg, with a maximum takeoff weight of 74,500 lb/33,793 kg. The F-14 is by far the heaviest aircraft flying on and off a carrier these days. You can actually feel an aircraft carrier shudder whenever one is catapulted off.

The famous Grumman 'Iron Works' has a well-earned reputation for producing the most durable and robust aircraft in the world. Much of the plane's structure, including the critical 'wing box' (containing the swing-wing mechanism), is made of titanium, a metal lighter than aluminum, stronger than steel, and notoriously difficult to weld. The Tomcat's horizontal tail surfaces were built from boron-epoxy composite-a very costly and advanced material that was used for the first time on any aircraft.

The F-14 is the Navy's only 'variable geometry' aircraft, a trait it inherited from its predecessor, the F-111B. While complex, the swing wing was a valid engineering solution to a difficult design problem for the Navy. The F-14 had to be both a long-range interceptor that could 'loiter' (fly slow and wait) and a high-performance fighter for air-superiority missions. If one aircraft was to do both jobs and still be capable of operating off aircraft carriers, it had to be able to literally 'redesign' itself in flight. This was the job of the swing wing. The Tomcat's wings sweep forward for increased lift in low-speed flight, particularly the critical takeoff and landing phases of a carrier-based mission, but when the wings sweep back for reduced drag at high speed, the F-14 can move like a scalded cat.

Unlike other variable-geometry aircraft like the F-111 Aardvark and MiG-23/27 Flogger, the F-14's wing sweep is controlled automatically by a computer known as the 'Mach Sweep Programmer.' This means that the pilot does not have to worry about it-the plane dynamically reconfigures itself from moment to moment for the optimum solution to the complex equations governing lift and drag. The wings then pivot on immensely strong bearings, moved by jackscrews driven by powerful hydraulic motors, giving the flight crew the best possible 'design' for any situation they are in. The result is an aircraft that is always being optimized, whether it is making a low-level, high-speed reconnaissance dash, or digging into a cornering turn pulling 'lead' on an enemy fighter. Along with the swing wings, the F-14's engineers managed to provide the flight crew with a full array of control surfaces, including full-span flaps along the trailing edge, leading edge slats, and spoilers on the upper surface of the wings. The speed brake is positioned far aft, between the twin vertical stabilizers. In fact, it was the seemingly random movement of these surfaces that caused Landing Signals Officers (LSOs) to dub the F-14 'the Turkey' during tests.

Visually, the F-14 is an imposing aircraft. The topside of the Tomcat's forward fuselage and two huge engine pods blend into a flat structure called the 'pancake,' which supports the tail surfaces and the tailhook. The pancake itself is a form of 'lifting body,' and provides a significant amount of the aircraft's total lift. The large canopy offers superb all-around visibility-a great improvement over previous Navy fighters like the F-4 Phantom, which had a deadly blind spot to the rear. This was one of the design criteria that helped make the Tomcat a much better dogfighter than the F-4, or the MiGs that it was designed to kill. The two-person flight crew (a pilot and Radar Intercept Officer or 'RIO') enters the cockpit using a retractable boarding ladder and cleverly designed 'kick-in' steps. Both positions have Martin-Baker 'zero-zero' ejection seats, meaning that they can actually save an air crew if the aircraft is sitting still (zero speed) on the ground (zero altitude). Three rearview mirrors are positioned around the canopy frame to help the pilot with rear visibility.

The design of the pilot's station was quite advanced for the early 1970's, with the most important data being displayed on an integrated 'Air Combat Maneuvering panel.' The Tomcat was also equipped with the Navy's first heads-up display (HUD) projected into the pilot's forward field of view, and the first use of the 'Hands-on-Throttle- and-Stick' (HOTAS) in the cockpit. The control stick and throttles are studded with buttons that govern weapon selection, radar modes, and other functions. HOTAS allows pilots to keep their eyes outside the cockpit during a dogfight. The rest of the cockpit is not so advanced. Since the F-14 was designed a decade ahead of 'glass cockpit' aircraft (like the F/A-18 Hornet), most of the control panels are traditional dial-type 'steam gauge' indicators. Unlike USAF fighters, though, the RIO's backseat position does not provide flight controls (unless you count the ejection seat). A large circular display screen-the Tactical Information Display-dominates the RIO's position, with a smaller Detail Data Display panel above it. These provide readouts for the AWG-9 radar/ fire control system, as well as weapons control. Again, circular 'steam gauges' dominate the RIO's cockpit.

When they arrived upon the aviation scene, the sensor and weapons systems of the Tomcat were a revolution.[49] The heart of the F-14 weapons system (in the — A and — B models) is the Raytheon-Hughes Airborne Weapons Group Model Nine (AWG-9) fire-control system. Composed of powerful radar, weapons-computer, signal-processor, and other components, the AWG- 9 made the F-14 the most powerful fighter in the world. Unfortunately, it never really got a chance to show its awesome capability in combat. Designed for the extremely long-range, multiple-target engagements that were projected for the Cold War at sea,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату