Miami, except that hers has somewhat more room. In fact, there are two separate positions for lookouts and officers to work topside. There is the usual array of periscopes and masts, including a huge dome for the Racal UAP ESM system. Both of the periscopes appear to be RAM coated to keep down their radar signature. Getting down the conning tower trunk into the control room is, if possible, tighter even than on Miami. In fact, almost everything on Triumph seems to be about three-fifths size compared to Miami-sort of like the difference between Disneyland in California and Walt Disney World in Florida!

Sonar Room

If you drop down the ladder into the control room and take a U-turn to the left, you will be in the sonar room of the Triumph, where all the equipment and displays for the sonar systems are contained. I should say here that the British have nothing like the BSY-1 combat system in service right now. There is a plan for a system called the 2076 in a few years, but right now, all contact data handed off between sonar systems is done manually. The sonar suite on Triumph might be compared favorably to that on a Flight I Los Angeles-class boat. The various sonar systems include:* Type 2020, the main sonar array (both active and passive) in the bow of the boat. Unlike the dome sonar on Miami, it is composed of an array of elements around the 'chin' (conformal array) of the boat. It can track several targets at once, and can pass data directly to the fire control system. One of the more interesting features is the 'captain's key,' which must be inserted in a slot in the 2020 control console before the active mode can be used. It is equipped with a special signal processor, Type 2027, which (if the tactical situation is right) can automatically calculate ranges to the target and feed the data to the fire control system.* Type 2072, the new flank array (passive listening only), which can only be described as huge. It is designed to detect broadband targets at long range.* Type 2046, the 'clip-on' towed sonar array (passive listening only), attached to a tow point on the tip of the horizontal stabilizer. It is capable of detecting both broadband and narrowband signals.* Type 2019, the acoustic intercept receiver for detecting active sonars and torpedoes. This is a French system that is manned, as opposed to the automatic operating mode of the U.S. WLR-9.

The sonar systems on Triumph provide excellent coverage in both spectrum and azimuth. Only the lack of a fully integrated combat system and the TB-23 towed array system keeps it from being the equal technically of the BSY-1.

Control Room/Fire Control/Navigation

If you duck back around the corner where you came from originally, you may be surprised to find that the landing for the conning tower ladder has now been converted into a chair for Commander Vaughan. From this position, he can view the repeater for the sonar systems, the fire control consoles in the track alley, and the plotting area. Just aft are the two periscopes and the mast for the UAP ESM system. The scopes are first-rate, with the CK 034 search scope easily being the equal of the American Type 18. It is equipped with readouts for the ESM receiver mounted on top of the mast as well as a 35mm camera for taking photographs. The CH 084 attack scope, which has a very small head (to make it hard to detect), is also equipped with a low-light TV camera. Both are very quiet when raised, and have excellent optics. Two differences are the use of a split image rangefinder, as well as more automated controls.

The fire control alley is equipped with six positions for fire control technicians. The system is set up to track and engage several targets simultaneously. The screens are round, red- or amber-colored plasma displays; a light pen is used to designate the targets and move between the various operating modes. All the fire control solutions are generated automatically, and there is no manual TMA solution being plotted to back up the automated system. The British seem to prefer this because they believe that most engagements will probably be at relatively short range. This is like what they might encounter with a diesel boat, in which the reaction time for getting the first weapon in the water is the deciding factor. Thus the sonar/fire control fit of the Triumph, as well as the training of the crew (and especially the captain in his Perisher course), is a reflection of the current RN combat doctrine.

The crew of a Royal Navy submarine conducts an escape drill. The trainee at the left is wearing the latest MK 8 escape suit. U.K. MINISTRY OF DEFENCE

Traveling aft from the track alley, you come upon the two plotting tables, called SNAPS tables. These are automated and can be fed with plotting information from the fire control system and navigational aids. In addition, they can make use of standard navigational charts, the coordinates of which are stored in the computer's memory. Supporting the navigator is a Navstar GPS receiver, as well as a SINS system (the gyro compartment is down in the third level portside) to help keep Triumph on course.

Across the control room to the port side, you find the ship control area. It is laid out similarly to the one on Miami, the main difference being that the British have automated the control system so only one man controls both the bow and stern diving planes from a single position. The ballast control panel is to the right of the ship handling position, with the diving officer seated behind them. The boat dives in about the same time as the Miami, though she seems to be somewhat easier to trim. Triumph handles extremely well, able to turn at over 1 degree per second with only a moderate rudder on. She also speeds up and slows down very quickly and smoothly, with no noticeable sound or vibration as she changes speed. It is the pumpjet that makes most of the difference in noise and vibration over a propeller system like that on the Miami. Also, her hull shape is somewhat better from a maneuvering point of view.

The ESM/Radio Spaces

Aft of the plotting area is the radio room. The British communications capabilities appear to be quite similar to those of the Miami, though it appears this system may not have an ELF capability. Just aft of the ship control is a door marked RADAR WARNING ROOM. This is the space where the readouts for the ESM system and communication intelligence (Comint) systems are located. Both systems are fed out of the mast antennas, especially the big ESM dome. These are really impressive systems, and are clearly a great deal more capable than a standard 688I. This is not to say the U.S. Navy and the Royal Navy do not have boats specially configured for ESM/Comint purposes; they do. But if I were an American admiral planning to use a sub to monitor radio or radar activity off a hostile coast, and I did not have one of those special boats, I might just ask the British to borrow a Trafalgar-class boat for the mission.

The Engine-The Reactor/Maneuvering Spaces

Aft from the control room, you walk under the main access hatch to the deck, and into the access hatch for the reactor space. As with the Miami, visitors are not allowed to enter this space. The Triumph's reactor, called PWR-1 (Pressurized Water Reactor-1), is derived from the American S5W plant. Therefore the British have to abide by all of the procedures and security regulations set down in a 1958 joint RN/U.S. Navy agreement. The PWR-1 supplies about 15,000 horsepower, translating into a top speed of about 30 knots when she is at depth. As far as layout, the machinery spaces are roughly equivalent to those on Miami, with two of everything (turbines, motor generators, etc.) except for the main

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×