the SSN and her crew will be to shadow the Russian SSBN.

The mission is not exactly a friendly one. Should a sudden crisis arise, the SSN's job is to close and destroy the missile boat before she can launch her birds. Short of that exigency, the SSN remains in trail, listening. There is much to learn. Probably the SSN's CO knows the name (or hull number) of the boat he's watching, and he observes the other CO's habits to add to what we already know. He'll listen to the boat, determining her unique mechanical characteristics so that other SSNs can identify her by her acoustic signature. Other observations will tell us much of the quality of the crew, changes in Russian operational doctrine, and from the boat's day-to-day routine, drills and readiness.

It's not quite that easy, of course. Soviet SSBNs are frequently accompanied by their own SSN guardians. Thus the Western submarine must track-and evade detection by-two adversaries who themselves have carefully thought-out routines for dealing with a potential shadower. This can be as simple as running the boomer at high speed toward her protecting SSN, forcing the trailing boat to move quickly herself and so make more noise than the U.S. skipper might wish. Noise is death in this business, and as important as the mechanical characteristics of the platform are, the commander with the most brains has the ultimate advantage.

The mission may be something from the past, but its immediacy hasn't changed. The warheads on those missile submarines are still real. Their aiming points are unknown, but so long as they exist, and so long as men can change their minds, they represent a danger to America and her allies. The smart move is to eliminate the warheads through diplomatic means. Until that happens, eliminating them in other ways will continue to be an option that our leaders will wish to have at their disposal.

So just how does one hunt such a beast? First you must learn its habits and characteristics, and like everything else in this world, the characteristics of the Russian boomer fleet are rapidly changing. With the drawdown in the CIS fleet, and the stipulations of the new START-II arms control treaty, the force of Russian boomers is becoming smaller. By the turn of the century they will probably have only fifteen to twenty missile boats altogether. The ones they keep are going to be the newest, most quiet boats in their fleet. This means that a Western SSN commander is likely to be hunting either a Delta IV or Typhoon-class boat. Both these types of submarine have the latest in quieting technology available to the CIS Navy. To the SSN commander hunting one, this means that even with his advantage in acoustic detection and tracking, which used to allow him to detect and track a target at ranges of tens of thousands of yards, now it's likely that solid contacts will be obtained at ranges of thousands of yards.

Russian Typhoon-class missile submarine running on the surface. OFFICIAL U.S. NAVY PHOTO 

Another problem for potential hunters of Russian SSBNs results from the manner in which they are employed and deployed. One of the early goals of missile designers in the former Soviet Union was to make the ranges of their sub-launched missiles as long as possible. It is an acknowledged fact that CIS boomers can launch their missiles at targets in the continental United States from alongside piers at their Kola Peninsula bases. Consequently the only reason the Russian leadership has for moving them is to hide them against possible attack by aircraft or missiles. And like prized jewels, the CIS Navy tends to place them in the maritime equivalent of bank vaults: the 'boomer bastions.'

Bastions were originally created to place Soviet SSBNs beyond the reach of Western ASW forces. While the actual location and layout of a boomer bastion is a highly sensitive subject in both the Pentagon and the Kremlin, the basic concept is quite simple: an SSBN is placed in a patrol area that is highly defendable and as remote from Western operating areas as possible. The Barents Sea, the Kara Gulf, the Sea of Okhotsk, and even sites under the polar ice pack have been suggested as possible bastion areas. This may mean the SSBN is placed in an area with entrances that are easily defended, or it might be surrounded by a belt of ASW mines. In addition, it probably is aggressively defended by Russian attack submarines, maritime patrol aircraft, and, if available, surface ASW groups.

Clearly, a boomer bastion is not the kind of target a carrier battle group is going to take on. In fact, a modern SSN is the only platform that can even begin to think about penetrating the bastions and pursuing the Russian SSBNs contained therein. Back in the early 1980s the U.S. maritime strategy had NATO trying to actively pursue the Soviet boomers in their lairs. Today the task is made more difficult by the decreased size of the NATO SSN force and the greater stealth of the CIS SSBNs.

Let's assume that Western intelligence services manage to find a boomer bastion. The method is not particularly important-it might be a satellite photo of a missile boat breaking through the polar ice during a missile drill, or radio traffic from a supporting surface group. For our purposes, though, we will assume that the target is a Typhoon-class SSBN being protected by an Akula-class SSN. Their bastion area is a parcel of the Barents Sea that overlaps the polar ice pack in what is called the marginal ice zone. The interface between the polar pack and the marginal ice zone is an extremely complex acoustic environment. All the noise from the ice floes breaking apart and grinding together makes it very difficult to locate and track an opposing submarine. In addition the boomer, much like a rat in a warehouse, has a back door to run to under the ice. For this reason, only the most capable of American submarines, an Improved Los Angeles (688I), is suitable.

After a transit to the presumed bastion area, the 688I begins to listen. It maintains a low speed, probably around 5 knots, to optimize the performance of its towed arrays. As the 688I finally enters the target zone, the tracking team in the control room utilizes every sensor and capability of the BSY-1 system to locate and track the opposing boats. This is vital because of the background noises in the ocean (waves, fish, marine mammals, etc.), as well as the noise coming from the ice pack. The first contact is going to have to be a 'direct path' contact, so the 688I searches, running in a series of expanding boxes until the first contact is achieved. This contact, which might be either the Typhoon or the Akula, is none too exact with regards to range, but bearing information is enough to continue the hunt. The hunt now becomes a task of patience. The boat will probably go to the quietest routine possible, as the closure to attack might take many hours.

While the American commander probably prefers to avoid the Akula by moving around the Typhoon and using it to mask the 688I's own noise signature, the extensive quieting on the Typhoon will probably preclude this. It simply would be too easy to miss the boomer and stumble into the Akula. Again, patience and stealth is the best tactic of the American boat. The goal at this point is to hold a sonar contact on the Typhoon while trying to avoid the Akula. The key moment comes when a firing solution is finally generated by the BSY-1, hopefully within the CO's designated firing range. Normally it would be helpful to take the time to establish a solid solution to the target to increase the chances of a hit on the first shot. But 'polishing the cannonball' with such opponents as the Typhoon and the Akula could cost the chance to get the first shot in. With the tracking capabilities of the Mk 48 ADCAP torpedo, and the danger posed by the Akula, it is now in the best interests of the 688I to 'shoot and scoot.' As soon as the solution on Typhoon is good enough, the American commander probably orders the launching of a pair of Mk 48 ADCAPs. Each is likely to be launched about 12 degrees off the intercept course (left and right) to the target, so as to cover the entire front 180-degree sector of the 688I. The fish are probably launched in the BSY-1's Short Range Attack (SRA) mode at the high-speed setting, the guidance wires are cut, and the seeker mode is set to active pinging. If he knows the bearing to the Akula, the American commander may choose to fire his other two torpedoes in SRA mode down that bearing also.

With the torpedoes heading on their own toward the Typhoon, the American boat can now run for its own safety (called 'clearing datum'). The captain of the 688I is probably going to kick up the speed as fast as possible (over 30 knots), launch some decoys or other countermeasures from the 3-inch signal ejector tubes, and go as deep as the local seabed and the capabilities of the boat will allow. If it's done right, the American boat should have a lead of several miles before one of the Russian boats can launch a torpedo in response. This they will do, though, and the American boat is sure to have one or more Russian torpedoes headed in its direction. But the CIS subs are also running for their lives, kicking out decoys and countermeasures and desperately trying to maneuver out of the way of the oncoming ADCAPs. But with a speed of 60-plus knots and a seeker head that can see targets almost 180 degrees around it, the simple fact is that no submarine afloat can outrun an ADCAP. The encounter now moves to the endgame.

The angling of the torpedoes from the 688I is designed to ensure that at least one of the Mk 48 ADCAPs will 'acquire' the Typhoon, though in about two-thirds of the situations, both weapons should track. At this point the Russian boomer is going all out to evade the incoming weapons. It launches countermeasures, trying to jam the seeker heads of the torpedoes and outmaneuver them. This probably will not work. As the Mk 48s close on the

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×