happen if they do not comply with the wishes of the new Islamic government.

An ideal way would be to seal the nearest choke point, then try to collect reparations to refrain from doing it again. For a cash-starved country like Algeria, this toll might be considered an excellent way to generate capital. The likely place for this demonstration would be the Straits of Gibraltar. Not only is it an ideal place for a diesel boat to operate, but the symbolism of doing it under the nose of the British Empire would be tough to resist.

The first notice of what was happening would probably be the 'flaming datum' of an exploding merchant ship. Most modern torpedoes are designed to explode under the keel of the target ship, snapping it in two. If this were done to a tanker, for example, there would likely be a massive oil spill and fire, as well as wreckage that might float as a hazard to navigation for some time. This, combined with the inevitable declaration from the Algerian government, would undoubtedly cause a reaction from the Western powers. For hundreds of years Great Britain has held control of the seas around Gibraltar, and any mischief in the area would probably make them want to deal with it themselves. The likely candidate for this ASW extermination job would be a Trafalgar-class nuclear boat, because of its ability to deploy rapidly to the area threatened by the Algerian Kilo. Most folks do not realize that a diesel boat is actually just a mobile minefield. It simply does not have the strategic mobility or sustained speed of a nuclear boat, a simple fact that is lost on critics of nuclear submarines.

The deploying T-boat is likely to have some help in the form of RAF Nimrod ASW aircraft. In addition, it is a safe bet that the British have seeded the straits with a variety of acoustic sensors, and the area is about as wired as a pinball machine. The problem for the British hunters is the adverse noise conditions in the straits. There are several thermal layers, which make passive sonar almost useless. In addition several currents, overlapping and opposed in direction, generate a lot of flow noise. All in all, the Straits of Gibraltar is a miserable place for passive ASW hunting.

Fortunately, though, the nuclear submarine has another advantage over the diesel boat besides sheer mobility. That advantage is the huge active sonar array positioned in the bulbous bow of the boat, which is able to send out pulses of sound and bounce them off a target submarine. A special operating mode makes it even more effective: in areas with relatively flat, hard bottoms, a technique called 'bottom bounce' can be used. Much like skipping a stone across the water, an active sonar can bounce sound waves off the bottom to contact another submarine. Using this technique, a nuclear submarine might contact an almost-silent diesel boat at ranges beyond 10,000 yards. And as an added benefit, because of all the reverberations from the sound waves bouncing off the seabed, the target submarine probably will not be able to tell what direction the active signal is coming from.

The Trafalgar enters the straits from the Atlantic side. The British may try to use their other assets, the Nimrods in particular, to help drive the Kilo into the hunting Trafalgar. The Nimrods may be tasked to drop active sonobuoys. These, combined with active sonars from ASW helicopters, might just make the Kilo captain move deeper into the straits, right into the waiting T-boat. The aircraft, however, will not be allowed to drop any ASW ordnance on it. With many submarines of various nations traveling through the straits, and the closeness of one of their own nuclear boats, the possibilities for a 'blue-on-blue' or friendly fire confrontation are simply too high. The Trafalgar is like a surgeon's scalpel compared to the bludgeons of the aircraft.

Once the British think the T-boat is within range of a bottom bounce detection, the Trafalgar would probably use her 2020 active sonar to scan for the Kilo. This will be extremely disconcerting for the Kilo captain, with the buoys and active sonars of the aircraft and helos driving him from the Mediterranean side, and the blasting from the active sonar of the Trafalgar. He may choose to find a shallow spot and bottom his boat in an attempt to wait the British forces out. This will not work. With the on-station loiter time granted by its nuclear power plant, the Kilo will be out of battery power and supplies to run her environmental control systems long before the beer runs out in the wardrooms of the T-boat.

Inevitably the Kilo will have to make a run for it, and that's the time for the kill. The advantage of active sonar is that range and bearing to the target are known with a fair degree of accuracy. An added bonus with this powerful generation of active sonars is that the acoustic intercept receiver on the Kilo will be so swamped with noise (like a stereo system with the volume too high-you cannot make out any discrete sound), they will not hear anything but the sound of the British 2020 sonar blasting away. Once the T-boat has closed to the desired range (probably over 10,000 yards), it is time to prosecute the Kilo. The Trafalgar may launch a pair of Spearfish torpedoes in high-speed mode, active pinging, with the wires acting as data links to the weapons.

The Kilo is likely to hear nothing of this. Only when the seeker heads of the Spearfish have acquired the Kilo will the active sonar of the T-boat be secured, and then the crew of the Kilo will hear over their acoustic intercept receiver the pinging of two Spearfish torpedoes already commencing their endgames. Unlike the previous scenarios, in which the nuclear boats could sometimes run from torpedoes and possibly outmaneuver them, the Kilo just does not have that option. Its relatively slow speed makes it something of a sitting duck, and the end will come quickly. This time there will be no doubt, for when the first torpedo hits, it will kill the little diesel boat and all its crew. In all likelihood, all that will be left is scrap metal and fish food.

And that's the way to deal with modern Barbary Pirates.

Tactical Example — Battle Group Escort

The big gun of the fleet is still the aircraft carrier battle group (CVBG), which for that very reason is itself a target. The carrier remains the best platform for projecting power from sea to land, and the best for establishing presence, a term that means just what it says. A carrier and her battle group can appear on the horizon and just be there. As a police car can calm a neighborhood merely by cruising down the street, so can a powerful air/surface force let people on land know that someone cares what is happening.

The most likely threat to a carrier is a submarine armed with antiship cruise missiles (SSMs). Though unlikely to cause fatal damage to a supercarrier, a few well-placed SSMs can force her to leave the scene of action for repairs. The range of modern cruise missiles (up to 300 miles) makes the task of protecting the carrier far more complex than it was only two decades ago. Another problem is the decreasing number of ASW escorts available to the commanders of CVBGs. In just the last couple of years the U.S. Navy has retired dozens of cruisers, destroyers, and frigates. Since the submarine remains the primary threat, another submarine must be one of the protectors.

The most formidable dedicated cruise-missile submarine (SSGN) is the Russian Oscar class (nicknamed 'Mongo' by some NATO submariners because of its awesome size). The Oscar-class SSGN is, in some ways, the Russians' first modern submarine. It is large and relatively quiet (much like a Sierra-class SSN) and is equipped to stream a large towed-array sonar. This boat, designed specifically to be a carrier hunter, is equipped with twenty- four SS-N-19 Shipwreck SSMs as well as a full array of torpedoes. It is the single most powerful attack submarine in the world, and thus must be hunted by the best boats we have, the 688Is.

Currently each CVBG usually has a pair of SSNs assigned to provide long-range ASW protection. Unlike the surface escorts, which have to stay within a few dozen miles of each other, the subs may be hundreds of miles from the main group. They will likely operate in clearly defined ASW kill zones, into which only they are allowed to operate and shoot. This is designed to minimize the chances of a 'blue-on-blue' ASW encounter.

Oscar-class guided missile submarine. OFFICIAL U.S. NAVY PHOTO

Hunting SSGNs is a most interesting game, different from other ASW tasks. Unlike SSBNs, which run silent and deep, the CVBG relies on mobility for its defense. And when the carrier moves swiftly, so must the hunting SSGN. Speed reveals any submarine's vulnerability. Speed creates noise and degrades sensor performance. The SSNs tasked to defend the carrier know both where and how fast the battle group is going, and can position themselves in ambush for whatever missile-carrying hunter may be listening. In addition, the American force may have the edge of a Surveillance Towed Array System (Surtass) ship supporting the CVBG. Using an advanced towed array, the Surtass ships are like mobile SOSUS listening posts, and the data collected can be forwarded to the CVBG commander and the hunting SSNs.

The pattern of this hunt will be sprint-and-drift. The hunters on both sides alternately race forward, then slow down to listen. As in all undersea encounters, the side that can hear first and farthest away has the biggest

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×