?- быстрее( А, В).
А = энн
В = том
?- retract( медл( X) ).
X = том;
X = пат;
nо
?- быстрее( энн, _ ).
nо
Заметьте, что при добавлении нового правила синтаксис требует, чтобы оно (как аргумент assert
) было заключено в скобки.
При добавлении нового предложения может возникнуть желание указать, на какое место в базе данных его следует поместить. Такую возможность обеспечивают предикаты asserta
и assertz
. Цель
asserta( С)
помещает С в начале базы данных. Цель
assertz( С)
— в конце. Вот пример, иллюстрирующий работу этих предикатов:
?- assеrt( p( a)), assertz( p( b) ), asserta( p( c) ).
yes
?- p( X).
X = с;
X = а;
X = b
Между consult
и assertz
существует связь. Обращение к файлу при помощи consult
можно в терминах assertz
определить так: считать все термы (предложения) файла и добавить их в конец базы данных.
Одним из полезных применений предиката asserta
является накопление уже вычисленных ответов на вопросы. Пусть, например, в программе определен предикат
решить( Задача, Решение)
Мы можем теперь задать вопрос и потребовать, чтобы ответ на него был запомнен, с тем чтобы облегчить получение ответов на будущие вопросы:
?- решить( задача1, решение),
asserta( решить( Задача1, Решение) ).
Если в первой из приведенных целей будет успех, ответ ( Решение)
будет сохранен, а затем использован так же, как и любое другое предложение, при ответе на дальнейшие вопросы.
Преимущество такого 'запоминания' состоит в том, что на дальнейшие вопросы, сопоставимые с добавленным фактом, ответ будет получен, как правило, значительно быстрее, чем в первый раз. Ответ будет теперь получен как факт, а не как результат вычислений, требующих, возможно, длительного времени.
Развитие этой идеи состоит в использовании assert
для порождения всех решений в виде таблицы фактов. Например, создать таблицу произведений всех чисел от 0 до 9 можно так: породить пару чисел X и Y, вычислить Z, равное X * Y, добавить эти три числа в виде строки в таблицу произведений, а затем создать искусственно неуспех. Неуспех вызовет возврат, в результате которого будет найдена новая пара чисел, и в таблицу добавится новая строка и т.д. Эта идея реализована в процедуре
таблица :-
L = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
принадлежит( X, L), % Выбрать первый сомножитель
принадлежит( Y, L), % Выбрать второй сомножитель
Z is X*Y,
assert( произв( X,Y,Z) ),
fail.
Вопрос
?- таблица.
потерпит, конечно, неудачу, однако в качестве своего побочного эффекта приведет к добавлению в базу данных целой таблицы произведений. После этого можно, например, спросить, какие пары дают произведения, равные 8:
?- произв( А, В, 8).
А = 1
В = 8;
А = 2
В = 4;
...
Здесь следует сделать одно замечание, относящееся к стилю программирования. Приведенные примеры показали некоторые явно полезные применения assert
и retract
. Однако использование этих отношений требует особой внимательности. Не рекомендуется применять их слишком часто и без должной осторожности - это плохой стиль программирования. Ведь добавляя и удаляя предложения, мы фактически изменяем программу. Поэтому отношения, выполнявшиеся в некоторой ее точке, могут оказаться неверными в другой. В разные моменты времени ответы на одни и те же вопросы будут различными. Таким образом, большое количество обращений к assert
и retract
может затемнить смысл программы и станет трудно разобрать, что истинно, а что — нет. В результате поведение программы может стать непонятным, трудно объяснимым, и вряд ли можно будет ей доверять.
7.6.
(а) Напишите вопрос к пролог-системе, который удаляет из базы данных всю таблицу произв
.
(b) Измените этот вопрос так, чтобы он удалил из таблицы только те строки, в которых произведение равно 0.
7.7. Определите отношение
копия( Терм, Копия)
которое порождает такую копию Терм
'а Копия
, в которой все переменные переименованы. Это легко сделать, используя assert
и retract
.
7.5. Средства управления
К настоящему моменту мы познакомились с большинством дополнительных средств управления, за исключением repeat
(повторение). Здесь мы для полноты приводим список всех таких средств.
• !
', предотвращает перебор,