9.3. Двоичные справочники: добавление и удаление элемента
Если мы имеем дело с динамически изменяемым множеством элементов данных, то нам может понадобиться внести в него новый элемент или удалить из него один из старых. В связи с этим набор основных операций, выполняемых над множеством S, таков:
внутри( X, S) % X содержится в S
добавить( S, X, S1) % Добавить X к S, результат - S1
удалить( S, X, S1) % Удалить X из S, результат - S1
Рис. 9.9. Введение в двоичный справочник нового элемента на уровне листьев. Показанные деревья соответствуют следующей последовательности вставок: добавить( Д1, 6, Д2)
, добавить( Д2, 6, Д3)
, добавить( Д3, 6, Д4)
доблист( nil, X, дер( nil, X, nil) ).
доблист( дер( Лев, X, Прав), X, дер( Лев, X, Прав) ).
доблист( дер( Лев, Кор, Прав), X, дер( Лев1, Кор, Прав)) :-
больше( Кор, X),
доблист( Лев, X, Лев1)).
доблист( дер( Лев, Кор, Прав), X, дер( Лев, Кор, Прав1)) :-
больше( X, Кор),
доблист( Прав, X, Прав1).
Рис. 9.10. Вставление в двоичный справочник нового элемента в качестве листа.
Определим отношение
доблист( Д, X, Д1)
Правила добавления элемента на уровне листьев таковы:
• Результат добавления элемента X к пустому дереву есть дерево дер( nil, X, nil)
.
• Если X совпадает с корнем дерева Д, то Д1 = Д (в множестве не допускается дублирования элементов).
• Если корень дерева Д больше, чем X, то X вносится в левое поддерево дерева Д; если корень меньше, чем X, то X вносится в правое поддерево.
На рис. 9.10 показана соответствующая программа.
Теперь рассмотрим операцию
удлист( Д1, X, Д2) :-
доблист( Д2, X, Д1).
Рис. 9.11. Удаление X из двоичного справочника. Возникает проблема наложения 'заплаты' на место удаленного элемента X.
К сожалению, если X — это внутренняя вершина, то такой способ не работает, поскольку возникает проблема, иллюстрацией к которой служит рис. 9.11. Вершина X имеет два поддерева Лев
и Прав
. После удаления вершины X в дереве образуется 'дыра', и поддеревья Лев
и Прав
теряют свою связь с остальной частью дерева. К вершине А оба эти поддерева присоединить невозможно, так как вершина А способна принять только одно из них.
Если одно из поддеревьев Лев и Прав пусто, то существует простое решение: подсоединить к А непустое поддерево. Если же оба поддерева непусты, то можно использовать следующую идею (рис. 9.12): если самую левую вершину Y поддерева Прав
переместить из ее текущего положения вверх и заполнить ею пробел, оставшийся после X, то упорядоченность дерева не нарушится. Разумеется, та же идея сработает и в симметричном случае, когда перемещается самая правая вершина поддерева Лев
.
Рис. 9. 2. Заполнение пустого места после удаления X.
На рис. 9.13 показана программа, реализующая операцию удаления элементов в соответствии с изложенными выше соображениями. Основную работу по перемещению самой левой вершины выполняет отношение
удмин( Дер, Y, Дер1)
Здесь Y — минимальная (т.е. самая левая) вершина дерева Дер
, а Дер1
— то, во что превращается дерево Дер
после удаления вершины Y.
Существует другой, элегантный способ реализация операции
Для того, чтобы добавить X в двоичный справочник Д, необходимо одно из двух:
• добавить X на место корня дерева (так, что X станет новым корнем) или
• если корень больше, чем X, то внести X в левое поддерево, иначе — в правое поддерево.
уд( дер( nil, X, Прав), X, Прав).
уд( дер( Лев, X, nil), X, Лев).
уд( дер( Лев, X, Прав), X, дер( Лев,Y, Прав1) ) :-
удмин( Прав, Y, Прав1).
уд( дер( Лев, Кор, Прав), X, дер( Лев1, Кор, Прав) ) :-
больше( Кор, X),
уд( Лев, X, Лев1).
уд( дер( Лев, Кор, Прав), X, дер( Лев, Кор, Прав1) ) :-
больше( X, Кор),
уд( Прав, X, Прав1).
удмин( дер( nil, Y, Прав), Y, Прав).
удмин( дер( Лев, Кор, Прав), Y, дер( Лев1, Кор, Прав) ) :-
удмин( Лев, Y, Лев1).
Рис. 9.13. Удаление элемента из двоичного справочника.
Трудным моментом здесь является введение X на место корня. Сформулируем эту операций в виде отношения
добкор( Д, X, X1)
где X — новый элемент, вставляемый вместо корня в Д, а Д1 — новый справочник с корнем X. На рис. 9.14 показано, как соотносятся X, Д и Д1. Остается вопрос: что из себя представляют поддеревья L1 и L2 (или, соответственно, R1 и R2) на рис. 9.14?