решить( Старт, Решение)

где Старт — стартовая вершина пространства состояний, а Решение — путь, ведущий из вершины Старт в любую целевую вершину. Для нашего конкретного примера обращение к пролог-системе имеет вид:

?- решить( [ [с, а, b], [], [] ], Решение).

В результате успешного поиска переменная Решение конкретизируется и превращается в список конфигураций кубиков. Этот список представляет собой план преобразования исходного состояния в состояние, в котором все три кубика поставлены друг на друга в указанном порядке [а, b, с].

11.2. Стратегия поиска в глубину

Существует много различных подходов к проблеме поиска решающего пути для задач, сформулированных в терминах пространства состояний. Основные две стратегии поиска — это поиск в глубину и поиск в ширину. В настоящем разделе мы реализуем первую из них.

Мы начнем разработку алгоритма и его вариантов со следующей простой идеи:

Для того, чтобы найти решающий путь Реш из заданной вершины В в некоторую целевую вершину, необходимо:

• если В — это целевая вершина, то положить Реш = [В], или

• если для исходной вершины В существует вершина-преемник В1, такая, что можно провести путь Реш1 из В1 в целевую вершину, то положить Реш = [В | Peш1].

Рис. 11.4. Пример простого пространства состояний: а — стартовая вершина, f и j — целевые вершины. Порядок, в которой происходит проход по вершинам пространства состояний при поиске в глубину: а, b, d, h, e, i, j. Найдено решение [a, b, e, j]. После возврата обнаружено другое решение: [а, с, f].

На Пролог это правило транслируется так:

решить( В, [В] ) :-

 цель( В).

решить( В, [В | Реш1] ) :-

 после( В, В1 ),

 решить( В1, Реш1).

Эта программа и есть реализация поиска в глубину. Мы говорим 'в глубину', имея в виду тот порядок, в котором рассматриваются альтернативы в пространстве состояний. Всегда, когда алгоритму поиска в глубину надлежит выбрать из нескольких вершин ту, в которую следует перейти для продолжения поиска, он предпочитает самую 'глубокую' из них. Самая глубокая вершина — это вершина, расположенная дальше других от стартовой вершины. На рис. 11.4 мы видим на примере, в каком порядке алгоритм проходит по вершинам. Этот порядок в точности соответствует результату трассировки процесса вычислений в пролог-системе при ответе на вопрос

?- решить( а, Реш).

Поиск в глубину наиболее адекватен рекурсивному стилю программирования, принятому в Прологе. Причина этого состоит в том, что, обрабатывая цели, пролог-система сама просматривает альтернативы именно в глубину.

Поиск в глубину прост, его легко программировать и он в некоторых случаях хорошо работает. Программа для решения задачи о восьми ферзях (см. гл. 4) фактически была примером поиска в глубину. Для того, чтобы можно было применить к этой задаче описанную выше процедуру решить, необходимо сформулировать задачу в терминах пространства состояний. Это можно сделать так:

• вершины пространства состояний — позиции, в которых поставлено 0 или более ферзей на нескольких последовательно расположенных горизонтальных линиях доски;

• вершина-преемник данной вершины может быть получена из нее после того, как в соответствующей позиции на следующую горизонтальную линию доски будет поставлен еще один ферзь, причем таким образом, чтобы ни один из уже поставленных ферзей не оказался под боем;

• стартовая вершина — пустая доска (представляется пустым списком);

• целевая вершина — любая позиция с восемью ферзями (правило получения вершины-преемника гарантирует, что ферзи не бьют друг друга).

Позицию на доске будем представлять как список Y-координат поставленных ферзей. Получаем программу:

после( Ферзи, [Ферзь | Ферзи] ) :-

 принадлежит( Ферзь, [1, 2, 3, 4, 5, 6, 7, 8] ),

  % Поместить ферзя на любую вертикальную линию

 небьет( Ферзь, Ферзи).

цель( [ _, _, _, _, _, _, _, _ ] )

 % Позиция с восемью ферзями

Отношение небьет означает, что Ферзь не может поразить ни одного ферзя из списка Ферзи. Эту процедуру можно легко запрограммировать так же, как это сделано в гл. 4. Ответ на вопрос

?- решить( [], Решение)

будет выглядеть как список позиций с постепенно увеличивающимся количеством поставленных ферзей. Список завершается 'безопасной' конфигурацией из восьми ферзей. Механизм возвратов позволит получить и другие решения задачи.

Поиск в глубину часто работает хорошо, как в рассмотренном примере, однако наша простая процедура решить может попасть в затруднительное положение, причем многими способами. Случится ли это или нет — зависит от структуры пространства состояний. Для того, чтобы затруднить работу процедуры решить в примере рис. 11.4, достаточно внести в задачу совсем небольшое изменение: добавить дугу, ведущую из h в d, чтобы получился цикл (рис. 11.5). В этом случае поиск будет выглядеть так: начиная с вершины а, спускаемся вплоть до h, придерживаясь самой левой ветви графа. На этот раз, в отличие от рис. 11.4, у вершины h будет преемник d. Поэтому произойдет не возврат из h, а переход к d. Затем мы найдем преемника вершины d, т.е. вершину h, и т.д., в результате программа зациклится между h и d.

Рис. 11.5. Начинаясь в а, поиск в глубину заканчивается бесконечным циклом между d и ha, b, d, h, d, h, d ….

Очевидное усовершенствование нашей программы поиска в глубину — добавление к ней механизма

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату