Основные концепции современной теории портфеля изложены в монографии, написанной доктором Гарри Марковицем. Первоначально Марковиц предпо­ложил, что управление портфелем является проблемой структурного, а не индивидуального выбора акций, что обычно практикуется. Марковиц доказывал, что диверсификация эффективна только тогда, когда корреляция между включен­ными в портфель рынками имеет отрицательное значение. Если у нас есть пор­тфель, составленный из одного вида акций, то наилучшая диверсификация дос­тигается в том случае, если мы выберем другой вид акций, которые имеют ми­нимально возможную корреляцию с ценой первой акции. В результате этого. портфель в целом (если он состоит из этих двух видов акций с отрицательной корреляцией) будет иметь меньшую дисперсию, чем любой вид акций, взятый отдельно. Марковиц предположил, что инвесторы действуют рациональным способои и при наличии выбора предпочитают портфель с меньшим риском при равном уровне прибыльности или выбирают портфель с большей прибылью, при одина­ковом риске. Далее Марковиц утверждает, что для данного уровня риска есть оп­ тимальный портфель с наивысшей доходностью, и таким же образом для данного уровня доходности есть оптимальный портфель с наименьшим риском. Порт­фель, доходность которого может быть увеличена без сопутствующего увеличе­ния риска или портфель, риск которого можно уменьшить без сопутствующего уменьшения доходности, согласно Марковицу, неэффективны.

Рисунок 1-7 показывает все имеющиеся портфели, рассматриваемые в данном примере. Если у вас портфель С, то лучше заменить его на портфель А, где при­быль такая же, но с меньшим риском, или на портфель В, где вы получите боль­шую прибыль при том же риске. Описывая эту ситуацию, Марковиц ввел понятие «эффективная граница» (efficient frontier). Это набор портфелей, которые находятся в верхней левой час­ти графика, то есть портфели, прибыль которых больше не может быть увеличе­на без увеличения риска, и риск которых не может быть уменьшен без уменьше­ния прибыли. Портфели, находящиеся на эффективной границе, называются эффективными портфелями (см. Рисунок 1-8). Портфели, которые находятся вверху справа и внизу слева, в целом недоста­точно диверсифицированы по сравнению с другими портфелями. Те же портфе­ли, которые находятся в середине эффективной границы, обычно очень хорошо диверсифицированы. Выбор портфеля инвестором зависит от степени неприятия риска инвестором — иначе говоря, от желания взять на себя риск. В модели Марковица любой портфель, который находится на эффективной границе, является хорошим выбором, но какой именно портфель выберет инвестор — это вопрос личного предпочтения (позднее мы увидим, что есть точное оптимальное расположение портфеля на эффективной границе для всех инвесторов).

Модель Марковица первоначально была представлена для портфеля ак­ций, который инвестор будет держать достаточно долго. Поэтому основными входными данными были ожидаемые доходы по акциям (определяется как ожидаемый прирост цены акции плюс дивиденды), ожидаемые дисперсии этих доходов и корреляции доходов между различными акциями. Если бы мы

Рисунок 1-7 Современная теория портфеля

Рисунок 1-8 Эффективная граница

перенесли эту концепцию на фьючерсы, то было бы разумным (так как по фью­черсам не выплачивают дивидендов) измерять ожидаемое повышение цены, дис­персию и корреляции различных фьючерсов. Возникает вопрос: «Если мы измеряем корреляцию цен, то что произойдет при включении в портфель двух систем с отрицательной корреляцией, работаю­щих на одном и том же рынке?» Допустим, у нас есть системы А и В с отрицатель­ной корреляцией. Когда А в проигрыше, В в выигрыше, и наоборот. Разве это не идеальная диверсификация? Действительно, мы хотим измерить не корреляции цен рынков, на которых работаем, а корреляции изменений ежедневных балансов различных рыночных систем. И все-таки это является сравнением яблок и апельси­нов. Скажем, две рыночные системы, корреляции которых мы собираемся изме­рить, работают на одном и том же рынке, и одна из систем имеет оптимальное f, соответствующее 1 контракту на каждые 2000 долларов на счете, а другая система имеет оптимальное f, соответствующее 1 контракту на каждые 10 000 долларов на счете. Чтобы понять суть торговли фиксированной долей в портфеле из не­скольких систем, мы переведем изменения ежедневного баланса для данной ры­ночной системы в ежедневные HPR. HPR в этом контексте означает, сколько за­работано или проиграно в данный день на основе 1 контракта в зависимости от оптимального f для этой системы. Рассмотрим пример. Скажем, рыночная систе­ма с оптимальным f в 2000 долларов за день заработала 100 долларов. Тогда HPR для этой рыночной системы составит 1,05. Дневное HPR можно найти следую­щим образом:

где А = сумма в долларах, выигранная или проигранная за этот день;

В = оптимальное f в долларах.

Для рассматриваемых рыночных систем преобразуем дневные выигрыши и про­игрыши в дневные HPR, тогда мы получим значение, не зависящее от количества контрактов. В указанном примере, где дневное HPR составляет 1,05, вы выиграли 5%. Эти 5% не зависят от того, был у вас 1 контракт или 1000 контрактов. Теперь можно сравнивать разные портфели. Мы будем сравнивать все возможные ком­бинации портфелей, начиная с портфелей, состоящих из одной рыночной систе­мы (для каждой рассматриваемой рыночной системы), заканчивая портфелями из N рыночных систем. В качестве примера рассмотрим рыночные системы А, В и С, их комбинации будут выглядеть следующим образом:

А

В

С

АВ

АС

ВС

АВС

Но не будем останавливаться на этом. Для каждой комбинации рассчитаем веса рыночных систем в портфеле. Для этого необходимо задать минимальный про­центный вес системы (или минимальное изменение веса). В следующем приме­ре (портфель из систем А, В, С) этот минимальный вес системы равен 10% (0,10):

А 100%
В 100%
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату