70% 10% 20%
10% 30% 60%
10% 20% 70%
10% 10% 80%

Введем понятие КСП (комбинация систем в портфеле). Теперь для каждой КСП рассчитаем совокупное HPR для отдельного дня. Совокупное HPR для данного дня будет суммой HPR каждой рыночной системы для этого дня, умноженных на процентные веса систем. Например, для систем А, В и С мы рассматриваем про­ центные веса 10%, 50%, 40% соответственно. Далее допустим, что отдельные HPR для этих рыночных систем в тот день были 0,9, 1,4 и 1,05 соответственно. Тогда совокупное HPR для этого дня будет:

Совокупное HPR = (0,9 * 0,1) + (1,4 * 0,5) + (1,05 * 0,4) = 0,09 + 0,7 + 0,42 =1,21

Теперь нанесем дневные HPR для каждой КСП на ось Y В модели Марковица это соот­ветствует получаемому доходу. На оси Х отложим стандартное отклонение дневных HPR для каждой КСП. В модели Марковица это соответствует риску. Современную теорию портфеля часто называют Теорией Е -V, что соответству­ет названиям осей. Вертикальную ось часто называют Е — ожидаемая прибыль (expected return), а горизонтальную ось называют V — дисперсия ожидаемой при­были (variance in expected returns). После этого можно найти эффективную границу. Мы включили различные рынки, системы и факторы f и теперь можем количественно определить лучшие КСП (то есть КСП, которые находятся вдоль эффективной границы).

Стратегия среднего геометрического портфеля

В какой именно точке на эффективной границе вы будете находиться (то есть ка­кова эффективная КСП), является функцией вашего собственного неприятия риска, по крайней мере, в соответствии с моделью Марковица. Однако есть опти­мальная точка на эффективной границе, и с помощью математических методов можно найти эту точку. Если вы выберете КСП с наивысшим средним геометри­ ческим HPR, то достигнете оптимальной КСП! Мы можем рассчитать среднее геометрическое из среднего арифметического HPR и стандартного отклонения HPR (обе эти величины у нас уже есть, так как они являются осями Х и Y модели Марковица!) Уравнения (1.16а) и (1.166) дают нам формулу для оценочного сред­него геометрического EGM (estimated geometric mean). Данный расчет очень бли­зок (обычно до четвертого или пятого знака после запятой) к реальному среднему геометрическому, поэтому можно использовать оценочное среднее геометричес­кое вместо реального среднего геометрического.

где EGM == оценочное среднее геометрическое;

AHPR = среднее арифметическое HPR, или координата, соответ­ствующая доходу по портфелю;

SD = стандартное отклонение HPR, или координата, соответ­ствующая риску по портфелю;

V = дисперсия HPR, равная SD ^ 2. Обе формы уравнения (1.16) эквивалентны.

При КСП с наивысшим средним геометрическим рост стоимости портфеля бу­дет максимальным; более того, данная КСП позволит достичь определенного уровня баланса за минимальное время.

Ежедневные процедуры при использовании оптимальных портфелей

Посмотрим на примере, как применять вышеописанный подход на ежеднев­ной основе. Допустим, что оптимальное КСП соответствует трем различным рыночным системам. Предположим, что процент размещения составляет 10%, 50% и 40%. Если бы вы рассматривали счет в 50 000 долларов, то он был бы «разделен» на три субсчета в 5000, 25 000 и 20 000 долларов для каждой рыночной системы (А, В и С) соответственно. Затем для баланса по субсчету каждой рыноч­ной системы вычислите, сколькими контрактами торговать. Скажем, фактор f дал следующие величины:

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату