составляет 0. Эти предположения относятся к играм, которые значительно проще, чем торговля. Однако первый и второй законы арксинуса в точности относятся к только что описанной игре. Конечно, напрямую они не применимы к реальной торговле, но для наглядности мы не будем различать игру и торговлю. Представим себе действительно случайную последовательность, такую, как бросок монеты[8], где мы получаем 1 единицу, когда выигрываем, и теряем 1 единицу, когда проигрываем. Если бы мы строили кривую баланса за Х число бросков, то наносили бы точки с координатами (X, Y), где Х представляет собой номер броска, а Y — наш общий выигрыш или проигрыш после этого броска.
Введем понятие
Символ ~ означает, что обе части стремятся к равенству в пределе. В этом случае, так как или К, или (N - К) стремятся к бесконечности, обе части уравнения будут стремиться к равенству.
Таким образом, если бросить монету 10 раз (N
К | Вероятность[9] |
о | 0,14795 |
1 | 0,1061 |
2 | 0,0796 |
3 | 0,0695 |
4 | 0,065 |
5 | 0,0637 |
6 | 0,065 |
7 | 0,0695 |
8 | 0,0796 |
9 | 0,1061 |
10 | 0,14795 |
Можно ожидать попадания в положительную область 5-ти из 10-ти бросков, но это наименее вероятный результат!
Наиболее вероятным результатом будет нахождение в положительной области при всех бросках или ни при одном!
Этот принцип формально описывается в
Для фиксированного А (0 < А < 1), когда N стремится к бесконечности, время, проведенное в положительной области (т.е., когда К / N < А), будет определяться следующим образом:
N = количество бросков;
К = количество бросков в положительной области.
Даже при N = 20 вы получите очень хорошее приближение для вероятности.
Уравнение (2.14), то есть первый закон арксинуса, говорит нам, что с вероятностью 0,1 кривая баланса счета проведет 99,4% времени в одной области (положительной или отрицательной). С вероятностью 0,2 кривая баланса будет находиться в той же области 97,6% времени. С вероятностью 0,5 кривая баланса счета проведет в одной области более 85,35% времени. Настолько упряма кривая баланса простой монетки!
Существует также
Если вы бросаете монету N раз, вероятность достижения максимума (или минимума) в точке К на кривой баланса также описывается уравнением (2.13):
Таким образом, если бросить монету 10 раз (N = 10), мы получим следующие вероятности максимума (или минимума) при К бросках: