В симметричном распределении среднее, медиана и мода имеют одинаковое значение. Однако когда распределение имеет ненулевое значение асимметрии, оно может принять вид, показанный на рисунке 3-3. Для асимметричного распределения (любого распределения с ненулевой асимметрией) верно равенство:
(3.08) Среднее - Мода = 3 * (Среднее - Медиана)
Есть много способов для расчета асимметрии, и они часто дают различные ответы. Ниже мы рассмотрим несколько вариантов:
(3.09) S == (Среднее - Мода) / Стандартное отклонение
(3.10) S = (3 * (Среднее - Медиана)) / Стандартное отклонение
Уравнения (3.09) и (3.10) дают нам первый и второй коэффициенты асимметрии Пирсона. Асимметрия также часто определяется следующим образом:
где S = асимметрия;
N
Х = значение, соответствующее точке i;
А = среднее арифметическое значений точек данных;
D = стандартное отклонение значений точек данных.
И наконец,
Как и предыдущие моменты, эксцесс имеет несколько способов расчета. Наиболее распространенными являются:
где К = эксцесс;
Q
Р = широта перцентиля 10-90.
(3.13) К
где К = эксцесс;
N = общее число точек данных;
Х = значение, соответствующее точке i;
А = среднее арифметическое значений точек данных;
D = стандартное отклонение значений точек данных.
Наконец, необходимо отметить, что «теория», связанная с моментами распределения, намного серьезнее, чем то, что представлено здесь. Для более глубокого понимания вам следует просмотреть книги по статистике, упомянутые в списке рекомендованной литературы. Для наших задач изложенного выше вполне достаточно.
До настоящего момента рассматривалось распределение данных в общем виде. Теперь мы изучим нормальное распределение.
Нормальное распределение
Часто нормальное распределение называют распределением Гаусса, или Муавра, в честь тех, кто, как считается, открыл его — Карл Фридрих Гаусс (1777-1855) и, веком ранее, что не так достоверно, Авраам де Муавр (1667-1754). Нормальное распределение считается наиболее ценным распределением, благодаря тому, что точно моделирует многие явления. Давайте рассмотрим приспособление, более известное как доска Галтона (рисунок 3-5). Это вертикально установленная доска в форме равнобедренного треу гольника. В доске расположены колышки, один в верхнем ряду, два во втором, и так далее. Каждый последующий ряд имеет на один колышек больше. Колышки в сечении треугольные, так что, когда падает шарик, у него есть вероятность 50/50 пойти вправо или влево. В основании доски находится серия желобов для подсчета попаданий каждого броска.
Шарики, падающие через доску Галтона и достигающие желобов, начинают формировать нормальное распределение. Чем «глубже» доска (то есть чем больше рядов она имеет) и чем больше шариков бросается, тем ближе конечный результат будет напоминать нормальное распределение.
Нормальное распределение интересно еще и потому, что оно является предельной формой многих других типов распределений. Например, если Х распределено биномиально, а N стремится к бесконечности, то Х стремится к нормальному распределению. Более того, нормальное распределение также является предельной формой многих других ценных распределений вероятности, таких как Пуассона, Стьюдента (или t-распределения). Другими словами, когда количество данных (N), используемое в этих распределениях, увеличивается, они все более напоминают нормальное распределение.
Центральная предельная теорема
Одно из наиболее важных применений нормального распределения относится к распределению средних значений. Средние значения выборок заданного размера, взятые таким образом, что каждый элемент выборки отобран независимо от других, дадут распределение, которое близко к нормальному Это чрезвычайно важный факт, так как он означает, что вы можете получить параметры действительно случайного процесса из средних значений, рассчитанных на основе выборочных данных.
Таким образом, мы можем сформулировать, что
Все вышесказанное верно