стандартную единицу (см. рисунок 3-12). Это даст нам:

0,9772499478 - 0,1586552595 = 0,8185946883

Рисунок 3-12 Площадь между -1 и +2 стандартными единицами

Другой способ: из единицы, представляющей всю площадь под кривой, надо вы­честь вероятность, не превышающую -1 стандартную единицу, и вероятность, превышающую 2 стандартные единицы:

= 1 - (0,022750052 + 0,1586552595) = 1 -0,1814053117 =0,8185946883

С помощью рассмотренных в этой главе математических подходов вы сможете рассчитывать любые вероятности событий для случайных процессов, имею­щих нормальное распределение.

Последующие производные нормального распределения

Иногда требуется знать вторую производную функции N(Z). Так как функция N(Z) дает нам значение площади под кривой при Z, а функция N'(Z) дает нам высоту самой кривой при значении Z, тогда функция N'(Z) дает нам мгновенный наклон (instantaneous slope) кривой при данном значении Z:

где ЕХР() = экспоненциальная функция.

Найдем наклон кривой N'(Z) при +2 стандартных отклонениях:

N'(Z) = -2 I 2,506628274 * ЕХР(-(+2^ 2) / 2) = -2 / 2,506628274 * ЕХР(-2) = -2 / 2,506628274 * 0,1353353 =-0,1079968336

Теперь мы знаем, что мгновенная скорость изменения функции N'(Z) при Z = +2 равна-0,1079968336. Это означает повышение/понижение за период, поэтому, когда Z = +2, кривая N'(Z) повышается на - 0,1079968336. Эта ситуация показана на рисунке 3-13.

Последующие производные даются далее для справки. Они не будут использо­ваться в оставшейся части книги и представлены для полноты освещения темы:

В качестве последнего дополнения к сказанному о нормальном распределении стоит заметить, что на самом деле это распределение не такое остроконечное, как на графиках, представленных в данной главе. Реальная форма нормального рас­пределения показана на рисунке 3-14. Отметьте, что здесь масштабы двух осей одинаковы, в то время как в других графических примерах они отличаются для придания более вытянутой формы.

Логарифмически нормальное распределение

Для торговли многие приложения требуют небольшой, но важной модификации нормального распределения.

Рисунок 3-13 N'(Z) дает наклон касательной к N'(Z) при Z = +2

Рисунок 3-14 Реальная форма нормального распределения

С помощью этой модификации нормальное распределение преобразуется в лога­рифмически нормальное распределение. Цена любого свободно котируемого инст­румента имеет нулевое значение в качестве нижнего предела[13]. Поэтому когда цена этого инструмента падает и приближается к нулю, то, теоретически, цене инстру­мента должно быть все труднее понизиться. Рассмотрим некую акцию стоимостью 10 долларов. Если бы акция упала на 5 долларов до 5 долларов за акцию (50% пони­жение), то в соответствии с нормальным распределением она может также легко упасть с 5 долларов до 0 долларов. Однако при логарифмически нормальном рас­пределении подобное падение на 50% с цены в 5 долларов за акцию до цены 2,50 долларов за акцию будет примерно таким же вероятным, как и падение с 10 долла­ров до 5 долларов за акцию.

Рисунок 3-15 Нормальное и логарифмически нормальное распределения

Логарифмически нормальное распределение, рисунок 3-15, работает точно так же, как и нормальное распределение, за тем исключением, что при логарифми­чески нормальном распределении мы имеем дело с процентными изменениями, а не абсолютными. Теперь рассмотрим движение вверх. В соответствии с логарифмически нормальным распределением движение с 10 долларов за акцию до 20 долларов за акцию анало­гично движению с 5 долларов до 10 долларов за акцию, так как оба эти движения представляют повышение на 100%. Это не означает, что мы не будем использовать нормальное распределение. Мы просто познакомимся с логарифмически нормаль­ным распределением, покажем его отличие от нормального (логарифмически нор­мальное распределение использует процентные, а не абсолютные изменения цены) и увидим, что обычно именно оно используется при обсуждении ценовых движений или в том случае, когда нормальное распределение ограничено снизу нулем. Для ис­пользования логарифмически нормального распределения необходимо преобразо­вывать данные, с которыми вы работаете, в натуральные логарифмы[14].

Преобразованные данные будут нормально распределяться, если необработан­ные данные распределялись логарифмически нормально. Если мы рассматриваем распределение изменений цены и оно логарифмически нормальное, то можно ис­пользовать нормальное распределение. Сначала мы должны разделить каждую цену закрытия на предыдущую цену закрытия. Допустим, мы рассматриваем распределе­ние ежемесячных цен закрытия (можно использовать любой временной период: ча­совой, дневной, годовой и т.д.). Предположим, цены закрытия последних пяти меся­цев — 10 долларов, 5 долларов, 10 долларов, 10 долларов и 20 долларов. Это соответ­ствует понижению на 50% во втором месяце, повышению на 100% в третьем месяце, повышению на 0% в четвертом месяце и повышению на 100% в пятом месяце. Соот­ветственно мы получим частные 0,5; 2; 1 и 2 по ежемесячным изменениям цен со второго по пятый месяцы. Это то же, что и HPR нашей последовательности. Теперь мы должны преобразовать их в натуральные логарифмы, чтобы изучить полученное распределение на основе математического аппарата нормального распределения. Таким образом, натуральный логарифм 0,5 равен -0,6931473, ln(2) =0,6931471 и ln(1) = 0. Теперь к распределению этих преобразованных данных мы можем приме­нять математические методы, относящиеся к нормальному распределению.

Параметрическое оптимальное f

Мы немного познакомились с математикой нормального и логарифмически нор­мального распределения и теперь посмотрим, как находить оптимальное f по нормально распределенным результатам. Формула Келли является примером параметрического оптимального f, где f явля­ется функцией двух параметров. В формуле Келли вводные параметры — это про­цент выигрышных ставок и отношение выигрыша к проигрышу. Однако формула Келли даст вам оптимальное f только тогда, когда возможные результаты имеют бернуллиево распределение. Другими словами, формула Келли даст правильное оптимальное f, когда есть только два возможных результата, в противном случае, как, например, в нормально распределенных результатах, формула Келли не даст вам правильное оптимальное f[15].

Параметрические методы гораздо мощнее эмпирических. Рассмотрим си­туацию, которую можно полностью описать бернуллиевым распределением. Мы можем рассчитать оптимальное f либо из формулы Келли, либо с помо­щью эмпирического метода. Допустим, мы выигрываем 60% времени. Предполо­жим, мы бросаем несимметричную монету, и при долгой последовательности 60% бросков будут приходиться на лицевую сторону. Поэтому мы каждый раз ставим на то, что монета будет выпадать на лицевую сторону, и выигрыш составляет 1:1. Из формулы Келли следует, что надо ставить 0,2 нашего счета. Также допустим, что из прошлых 20 бросков 11 выпали лицевой стороной, а 9 обратной. Если бы мы использовали эти 20 сделок в качестве вводных данных для эмпирического метода расчета f, результатом было бы то, что следует рисковать 0,1 нашего счета при каждой следующей ставке. Какое значение правильно, 0,2,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату