полученное параметрическим методом (фор­мула Келли с бернуллиевым распределением), или 0,1, найденное эмпирически на основе 20 последних бросков? Правильным ответом является значение 0,2, найденное с помощью параметрического метода. Причина в том, что каждый последующий бросок имеет 60% вероятность выпасть лицевой стороной, а не 55% вероятность, что следует из результатов 20 последних бросков. Хотя мы рассмат­риваем только 5% отклонение в вероятности, то есть 1 бросок из 20, результаты после применения разных значений f будут сильно отличаться. Вообще парамет­рические методы внутренне более точны, чем эмпирические (при условии, что мы знаем распределение результатов). Это первое преимущество параметричес­кого метода. Самый большой недостаток параметрических методов состоит в том, что мы должны знать, каким распределение результатов будет в течение длитель­ного времени. Второе преимущество состоит в том, что для эмпирического метода требуют­ся исторические данные, в то время как для параметрического в этом нет необхо­димости. Кроме того, эта история должна быть довольно протяженной. В только

что рассмотренном примере можно предположить, что, если бы у нас была исто­рия 50 бросков, мы бы получили эмпирическое оптимальное f ближе к 0,2. При истории 1000 бросков оно было бы еще ближе. Тот факт, что эмпирические методы требуют довольно большого объема исторических данных, свел все их использование к механическим торговым системам. Тот, кто в торговле использует что-либо отличное от механических торговых систем, будь то волны Эллиотта или фундаментальные данные, прак­тически не имеет возможности использовать метод оптимального f. С парамет­рическими методами дело обстоит иначе. Например, тот, кто желает слепо сле­довать какому-нибудь рыночному гуру, имеет теперь возможность использо­вать оптимальное f. В этом состоит третье преимущество параметрического мето­да — он может использоваться любым трейдером на любом рынке. В том случае, когда не используется механическая торговая система, следует помнить о важном допущении. Оно состоит в том, что будущее распределение прибылей и убытков будет напоминать распределение в прошлом (поэтому мы и рассчитываем оптимальное f), это может оказаться менее вероятным, чем в случае использования механической системы.

Все вышесказанное заставляет по-иному взглянуть на ожидаемую работу лю­бого не полностью механического метода. Даже профессионалы («фундамента-листы», последователи Ганна или Эллиотта и т.п.), использующие такие методы, обречены на неудачу, если они находятся далеко справа от пика кривой f. Если они слишком далеко слева от пика, то получат геометрически более низкие при­были, чем их опыт и навыки в этой области позволяют. Более того, практики не полностью механических методов должны понимать, что все сказанное об опти­мальном f и чисто механических методах будет иметь прямое отношение и к их системам. Это надо учитывать при использовании подобных методов. Помните, что проигрыши могут быть значительными, но это не означает, что метод не сле­дует применять.

Четвертое и, возможно, наибольшее преимущество параметрического метода определения оптимального f состоит в том, что параметрический метод позволя­ет создавать модели «что если». Например, вы решили торговать по рыночной системе, которая работала достаточно успешно, но хотите подготовиться к ситуа­ции, когда эта рыночная система прекратит хорошо работать. Параметрические методы позволяют варьировать ваши вводные параметры для отражения возмож­ных изменений, и благодаря этому показать, когда рыночная система прекратит хорошо работать. Еще раз повторюсь: параметрические методы намного мощнее эмпирических.

Зачем вообще использовать эмпирические методы? Они интуитивно более очевидны, чем параметрические. Следовательно, эмпирические методы необ­ходимо изучать до перехода к параметрическим. Мы уже достаточно подробно рассмотрели эмпирический подход и поэтому готовы изучать параметрические методы.

Распределение торговых прибылей и убытков (P&L)

Рассмотрим следующую последовательность 232 торговых прибылей и убытков в пунктах. Не имеет значения, к какому товару или системе относится этот поток данных — это может быть любая система на любом рынке.

№ сделки P&L № сделки P&L № сделки P&L № сделки P&L
1. 0,18 25. 0,15 49. 0,17 73. 0,22
2. -1,11 26. 0,15 50. -1,53 74. 0,92
3. 0,42 27. -1,14 51. 0,15 75. 0,32
4. -0,83 28. 1,12 52. -0,93 76. 0,17
5. 1,42 29. -1,88 53. 0,42 77. 0,57
6. 0,42 30. 0,17 54. 2,77 78. 0,17
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату