счета. Как можно видеть, использование нормального распределения сместило нас слегка вправо вдоль кривой f и привело к торговле несколько большим числом контрактов, чем предлагает эмпирический метод.
Однако, как мы увидим позже, многое говорит в пользу того, что будущее распределение цен будет нормальным. Когда мы покупаем или продаем опцион, предположение, что будущее распределение изменений цены базового инструмента будет нормальным, уже заложено в цену опциона. Точно так же можно сказать, что трейдеры, не использующие механические системы, получат в будущем результаты, которые нормально распределены.
В методе, описанном в этой главе, используются неприведенные данные. При использовании приведенных данных метод будет выглядеть следующим образом:
1. До того как данные нормированы, их следует привести к текущим ценам путем преобразования всех торговых прибылей и убытков в процентные прибыли и убытки с помощью уравнений с (2.10а) по (2.10в). Затем эти процентные прибыли и убытки следует умножить на текущую цену
2. Когда вы перейдете к нормированию этих данных, нормируйте приведенные данные, используя среднее и стандартное отклонение приведенных данных.
3. Далее, определите оптимальное f, среднее геометрическое и TWR. Средняя геометрическая сделка, средняя арифметическая сделка и порог геометрической торговли справедливы только для текущей цены базового инструмента. Когда цена базового инструмента изменяется, процедура должна быть проведена заново. Когда вы перейдете к повторному проведению процедуры с другой ценой базового инструмента, вы получите то же оптимальное f, среднее геометрическое и TWR. Однако средняя арифметическая сделка, средняя геометрическая сделка и порог геометрической торговли будут другими в зависимости от новой цены базового инструмента.
4. Количество контрактов для торговли, рассчитываемое с помощью уравнения (3.34), соответствующим образом изменится. P&L наихудшего случая, переменная W, используемая в уравнении (3.34), также изменится.
Из этой главы, мы узнали, как найти оптимальное f по распределению вероятности. Мы использовали нормальное распределение, так как оно описывает многие естественно происходящие процессы. Кроме того, с ним легче работать, чем со многими другими распределениями, так как можно рассчитать интеграл функции нормального распределения с помощью уравнения (3.21)[16]. Однако нормальное распределение зачастую является неполной моделью для распределения торговых прибылей и убытков. Какая модель будет приемлемой для наших целей? В следующей главе мы ответим на этот вопрос и будем полагаться на методы из главы 3 при работе с любым видом распределения вероятности независимо от того, существует интеграл функции распределения или нет.
Глава 4
Параметрические методы для других распределений
Тест Колмогорова-Смирнова (К-С)
Хи-квадрат тест, без сомнения, является наиболее популярным из всех методов сравнения двух распределений. Так как многие ориентированные на рынок приложения, помимо рассматриваемых в этой главе, часто используют хи-квадрат тест, то он описан в Приложении А. Однако для наших целей наилучшим методом будет тест К-С. Этот очень эффективный тест применим к
Все функции распределения вероятности имеют минимальное значение 0 и максимальное значение 1. То, как они ведут себя между ними, и отличает их. Тест К-С измеряет очень простую переменную D, которая определяется как максимальное абсолютное значение разности между двумя функциями распределения вероятности. Тест К-С достаточно прост. N объектов (в нашем случае сделок) нормируются (вычитается среднее значение, и полученная разность делится на стандартное отклонение) и сортируются в порядке возрастания. Когда мы проходим эти отсортированные и нормированные сделки, накопленная вероятность рассматриваемого количества сделок делится на N. Когда мы берем первую сделку в отсортированной последовательности с наименьшим стандартным значением,
Для того чтобы прояснить эту ситуацию, посмотрим на рисунок 4-1. Отметьте. что в точке А фактическая кривая находится выше теоретической. Поэтому мы сравниваем текущее значение фактической ФРВ с текущим теоретическим значением для нахождения наибольшей разности. Однако в точке В фактическая кривая находится ниже теоретической. Поэтому мы сравниваем предыдущее факти ческое значение с текущим теоретическим значением. Идея состоит в том, что в результате мы выберем наибольшую разность.
Для каждого стандартного значения нам надо взять абсолютное значение разности между текущим значением фактической ФРВ и текущим значением теоретической ФРВ. Нам также надо взять абсолютное значение разности между предыдущим значением фактической ФРВ и текущим значением теоретической ФРВ. Повторив эту операцию для всех стандартных значений точек, где фактическая ФРВ делает скачок вверх на 1/N, и взяв наибольшую разность, мы определим переменную D.

Чем ниже значение D, тем больше похожи два распределения. Мы можем преобразовать значение D в уровень значимости с помощью следующей формулы:

где SIG = уровень значимости для данного D и N;
D = статистика К-С;
N = количество сделок, по которым определена статистика К-С;
% = оператор, означающий остаток после деления. Здесь J%2 дает остаток после деления J на 2;
ЕХР() = экспоненциальная функция.
