100,50, тогда процентное повышение для этой сделки рав­но 0,18/100,50=0,001791044776. Теперь допустим, что текущая цена базового инструмента равна 112,00. Умножив 0,001791044776 на 112,00, получим приведен­ное значение P&L, равное 0,2005970149. Если мы хотим использовать приведенные данные, то следует провести анало­гичную операцию со всеми 232 торговыми прибылями и убытками. Затем следует рассчитать среднее арифметическое и стандартное отклонение по приведенным сделкам и использовать уравнение (3.16) для нормирования данных. Далее необ­ходимо найти набор оптимальных параметров LOC, SCALE, SKEW и KURT по приведенным данным так же, как было показано в этой главе для неприведенных данных. Процедура определения оптимального f, среднего геометрического и TWR аналогична уже рассмотренной нами. Побочные продукты: средняя геометрическая сделка, средняя арифметическая сделка и порог геометри­ческой торговли — действительны только для текущей цены базового инструмен­та. Если цена базового инструмента изменится, расчет следует повторить, вернув­шись к первому шагу, умножив процентные прибыли и убытки на новую цену базового инструмента. Когда вы перейдете к этой процедуре с другой ценой базово­го инструмента, то получите такое же оптимальное f, среднее геометрическое и TWR. Однако средняя арифметическая сделка, средняя геометрическая сделка и порог геометрической торговли будут другими в зависимости от новой цены базо­вого инструмента.

Количество контрактов для торговли, определяемое уравнением (3.34), также должно измениться. Ассоциированное P&L наихудшего случая (переменная W из уравнения (3.35)) будет другим в уравнении (3.34) в результате изменений, выз­ванных приведением данных к другой текущей цене.

Оптимальное F для других распределений и настраиваемых кривых

Существует много других способов, с помощью которых можно определить параметрическое оптимальное f. В предыдущей главе мы рассмотрели проце­дуру поиска оптимального f для нормально распределенных данных. Итак, у нас есть процедура, которая дает оптимальное f для любого нормально распре­деленного явления. Та же процедура используется для поиска оптимального/в любом распределении, если существует функция распределения (подобные функ­ции описаны для многих других распространенных распределений в приложе­нии В). Когда функции распределения не существует (т.е. когда функция плот­ности вероятности не интегрируется), оптимальное f можно найти с помощью численного метода, описанного в этой главе, приблизительно рассчитав функцию распределения.

Данная глава посвящена моделированию фактического распределения сделок с помощью регулируемого распределения, то есть поиску функции и ее подходя­щих параметров, которые моделируют фактическую функцию плотности вероят­ности торговых P&L с двумя точками перегиба. Вы можете использовать уже из­вестные функции и методы, например, полиномиальную интерполяцию или эк­ страполяцию, интерполяцию и экстраполяцию рациональной функции (частные многочленов), или использовать сплайн-интерполяцию. После того как теорети­ческая функция найдена, можно определить ассоциированные вероятности тем же методом расчета интеграла, который использовался при поиске ассоцииро­ванных вероятностей регулируемого распределения, или рассчитать интеграл с помощью методов математического анализа. Одна из целей этой книги — позволить трейдерам, использующим немеха­нические системы, применять те же методы управления счетом, что и трейде­рам, использующим механические системы. Регулируемое распределение тре­бует расчета параметров, они относятся к первым четырем моментам распре­деления. Именно эти моменты — расположение, масштаб, асимметрия и экс­цесс — описывают распределение. Таким образом, кто-либо, торгующий по немеханическому методу, например по волнам Эллиотта, может рассчитать параметры и получить оптимальное f и побочные продукты. Наличие прошлой истории сделок не является необходимым условием для расчета данных пара­метров. Если бы вы использовали другие упомянутые выше методы подгонки, вам также не обязательно было бы знать исторические данные, но значения параметров такой подгонки не обязательно относились бы к моментам рас­пределения. Эти методы могут лишить вас возможности посмотреть, что про­изойдет, если увеличится эксцесс или изменится асимметрия, изменится мас­штаб и т.д. Наше регулируемое распределение является логичным выбором теоретической функции, которая хорошо описывает фактическое распределе­ние, так как параметры не только задают моменты распределения, они дают нам контроль над этими моментами при прогнозировании будущих измене­ний в распределении. Более того, рассчитать параметры рассматриваемого здесь регулируемого распределения легче, чем подогнать какую-либо произ­вольную функцию.

Планирование сценария

Специалисты, которые в силу своей профессии занимаются прогнозировани­ем (экономисты, аналитики фондового рынка, метеорологи, правительствен­ные чиновники и т.д.), довольно часто ошибаются, но надо признать, что большинство решений, которые человек должен принять в жизни, обычно требуют прогноза.

Здесь есть две ловушки. Во-первых, люди делают слишком оптимистичные предположения о будущем. Большинство из нас уверены, что в этом месяце мы скорее выиграем в лотерею, чем погибнем в автокатастрофе, даже если веро­ятность последнего выше. Это верно не только на уровне отдельного лица, но и на уровне группы. Когда люди работают вместе, они стремятся видеть бла­гоприятный результат как наиболее вероятный результат (иначе не было бы смысла работать, пока, конечно, все мы не стали автоматами, безрассудно надрывающимися на «тонущих кораблях»).

Вторая и более пагубная ловушка состоит в том, что мы делаем прямые про­гнозы, например пытаемся предсказать цену галлона бензина через два года или пытаемся предсказать, что произойдет с нашей карьерой, кто будет следующим президентом, каким будет следующий стиль, и так далее. Что бы мы ни говорили о будущем, мы стремимся думать о единственном, наиболее вероятном результа­те. Таким образом, когда необходимо принять решение или самостоятельно, или коллективно, мы принимаем его, основываясь на том, что прогноз есть един­ственный наиболее вероятный результат. В итоге, мы часто получаем неприятные сюрпризы.

Планирование сценария отчасти решает эту проблему. Сценарий просто яв­ляется возможным прогнозом, одним из путей, по которому могут развиваться события. Планирование сценария предполагает набор сценариев для покрытия возможного спектра исходов. Конечно, полный спектр никогда не будет получен, но вы можете рассмотреть столько сценариев, сколько сочтете нужным. Таким образом, в противоположность прямому прогнозу наиболее вероятного результата вы можете подготовиться к будущему. Более того, планирование сце­нария подготовит вас к тому, что может быть в противном случае неожиданным событием.

Допустим, вы занимаетесь долгосрочным планированием для компании, которая производит некий продукт. Вместо того, чтобы сделать один наиболее вероятный прямой прогноз, используйте метод планирования сценария. Ме­тодом «мозгового штурма» вместе с коллегами определите возможные пути развития событий. Что будет, если вы не сможете получить достаточно сырья, чтобы произвести этот продукт? Как изменится ситуация, если один из ваших конкурентов обанкротится? Как будут развиваться события, если на рынке по­явится новый конкурент? Что произойдет, если вы серьезно недооцените спрос на этот продукт? Что будет, если где-либо начнется война? А если нач­нется ядерная война? Так как каждый сценарий возможен, его нужно рассмат­ривать серьезно. Теперь надо понять, что вы будете делать после того, как оп­ределите эти сценарии. Вы должны определить цель, которую хотите достичь при том или ином сце­нарии. В зависимости от сценария цель не обязательно должна быть положи­тельной. Например, при пессимистическом сценарии это могут быть просто ремонтно-восстановительные работы на предприятии. После того как вы опреде­лите цель для данного сценария, надо составить план на случай непредвиден­ных ситуаций, относящихся к этому сценарию, для достижения необходимой цели. Например, как уже было сказано, при невероятно мрачном сценарии ва­шей целью могут быть ремонтно- восстановительные работы, и вам надо иметь план, чтобы минимизировать ущерб. Помимо всего прочего, планирование сце­нария даст вам алгоритм, которому надо следовать, если определенный сцена­рий реализуется. Существует тесная связь между планированием сценария и оптимальным f. Оптимальное f позволяет разместить оптимальное количество ресурсов при определенном наборе возможных сценариев. На самом деле, реализуется только один сценарий, даже если мы планируем их несколько. Планирование сценария ставит нас в ситуацию, когда необходимо принять решение, какое количество ресурсов размещать сегодня при возможных сценариях на завтра. Эта количественная оценка последствий — поистине

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату