КРИСТАЛЛ ПОД ЛАЗЕРНЫМ ЛУЧОМ

В этом очерке — рассказ о принудительном поселении дефектов в кристалле, который облучается световым потоком.

Речь будет идти о кристалле с макроскопическими включениями, которые оказались в нем случайно или были введены преднамеренно. Это совсем не экзотический объект — кристаллами с включениями заполнены недра Земли. Пожалуй, большей экзотикой является кристалл без включений, особенно если имеются в виду естественные кристаллы, а не выращенные искусственно с соблюдением множества предосторожностей. Предполагаем, что кристалл прозрачен для лазерного луча и, распространяясь в кристалле, луч может достичь включения, почти не ослабев по дороге.

Вот теперь можно кое-что рассказать о том, как включения в кристалле могут повлиять на его «оптическую прочность», т. е. на ту минимальную интенсивность лазерного луча, которой оказывается достаточно для того, чтобы, поглощая энергию луча, кристалл разрушился.

Два коротеньких рассказа о двух механизмах этого влияния.

Вначале о простейшем механизме. Назовем его первым. Представим себе, что в оптически прозрачном кристалле имеется включение, полностью поглощающее свет. Скажем, металлический шарик в монокристалле каменной соли. Допустим, что кристалл импульсно, в течение времени ?, освещается световым пучком, интенсивность которого I0. Время ? измеряется в секундах, а интенсивность — в эрг/(мм2•с). Шарик, радиус которого R, за время вспышки поглотит энергию

W = ?R2I0?.

Эта энергия может оказаться совсем не малой. Поглотив ее, шарик может не только заметно нагреться, но и расплавиться и даже вскипеть. Если масса шарика

m =4/3. ? R3d

(d — плотность), а С — его теплоемкость,

то он нагреется на ?Т = W/Ст ? I0?/RСd .

Любопытную закономерность предсказывает формула, в знаменателе которой стоит радиус шарика: чем меньше шарик, тем до более высокой температуры он будет нагреваться, тем ранее расплавится и ранее вскипит, тем он опаснее для кристалла. Маленький опаснее большого! Воспользуемся формулой и убедимся, что даже под влиянием импульса совсем маломощного лазера (I0 ? 4•1010 эрг/ (мм2•с), ? ? 10-3 с) медный шарик, радиус которого R ? 10-4 см (d = 8,9 г/см3, а С = 4•102 эрг/(г•°С)), нагреется до температуры Т ? 106 °С. Оказывается, что он вскипит, превратится в пар под давлением, которое может достичь десятков тысяч атмосфер — величины вполне достаточной, чтобы разрушить кристалл вблизи шарика. Впрочем, для того чтобы кристалл разрушился или заметно деформировался, достаточно нагрева в десятки раз меньшего. Медный шарик при этом даже не расплавится, а просто, вследствие теплового расширения, его радиус возрастет. Как показывает расчет, в кристалле-матрице вблизи шарика это вызовет напряжения ? ? 1011 дин/см2, что предостаточно для того, чтобы в кристалле вокруг шарика появились значительные напряжения и очаги разрушения.

Теперь о втором механизме. Как и в первом механизме, главенствующую роль играет наличие включения, поглощающего свет. Оно нагревается и создает вокруг себя поле напряжений, величина которых постепенно уменьшается по мере удаления от включения источника напряжений. В однородном ненапряженном кристалле лучи света распространяются прямолинейно. Это — аксиома! А попадая в область, где от точки к точке напряжения меняют величину, луч изгибается. В симметричном поле напряжений вокруг шарика омывающие его лучи могут, изогнувшись, пересечься за ним. И здесь вступает в действие усиление интенсивности за счет взаимного пересечения лучей, рожденных общим источником — лазером.

Напряженная область вокруг шарика играет роль, подобную роли фокусирующей линзы, которая собирает лучи в фокусе. Даже при слабой интенсивности света, падающего на линзу, интенсивность в фокусе может оказаться огромной. Скажем так: опасной. В тени разогретого шарика она тоже может оказаться опасной для кристалла, вызвать в нем локальные разрушения.

Экспериментально этот механизм появления очагов разрушения в кристалле с поглощающими включениями наблюдается отчетливо: поглощающее включение, а за ним — очаг трещин.

АТОМНЫЙ ВЗРЫВ В КРИСТАЛЛЕ

Речь будет идти не о кристалле, попавшем в зону атомного взрыва и обезображенного взрывной волной. Имеются в виду совершенно будничные, мирные условия, при которых кристалл сохраняет все отчетливо видимые добродетели: и совершенство формы, и прозрачность. Между тем не вне кристалла, а в нем происходят атомные взрывы: систематически, всегда, планомерно. Происходят и оставляют последствия.

Очерк начат интригующей загадкой, в которой, однако, нет и тени надуманности. Имеется в виду абсолютно реальная ситуация. Практически в любом естественном минерале есть малая, гомеопатическая примесь урана. Некоторые из изотопов урана, как известно, самопроизвольно распадаются. Это значит, что ядро делится (взрывается!), выделяя при этом значительную энергию. Этакая бомба, состоящая из одного атома! Такой взрыв чрезвычайно редко, но происходит самопроизвольно, и после него в кристалле остается (поселяется!) протяженная дефектная область, именуемая «трек». Этому виду дефекта и посвящен очерк.

Осколок распавшегося ядра — это тяжелый ион с отрицательным зарядом g ? 20е. Ядро тяжелого элемента можно искусственно заставить распасться на осколки, если выстрелить в него нейтроном и попасть. А ядро изотопа U235 очень редко, но распадается самопроизвольно, превращаясь при этом в два осколка. Каждый из двух осколков ядра уносит с собой огромную энергию W0 ? 108 эВ. Полученную при взрыве энергию он теряет при столкновениях с электронами и ионами, образующими кристалл. В последовательности таких столкновений и может возникнуть в кристалле дефектная область — трек. Заметим, что высокая степень ионизации осколка обусловлена эффектом, который предсказал Нильс Бор. Он обратил внимание на то, что, обладая большой энергией, а следовательно, и скоростью, осколок может как бы вырваться из наиболее удаленной от ядра части собственной «электронной шубы», так как его скорость может оказаться большей, чем скорость

Вы читаете Живой кристалл
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату