поверхностью живого кристалла.
ЗАПОТЕВАНИЕ КРИСТАЛЛА
В своем стремлении уменьшить энергию, связанную с наличием поверхности, кристалл не пренебрегает ни одной из представляющихся ему возможностей. Если в окружающей его атмосфере имеются атомы, которые, осев на поверхности, понижают его поверхностное натяжение, кристалл удержит ровно столько атомов этого сорта, случайно столкнувшихся с его поверхностью, сколько нужно для того, чтобы понижение поверхностной энергии было максимальным. Если такие атомы имеются в качестве примеси в объеме кристалла, кристалл в нужном количестве вытолкнет их на поверхность. Охотно покроется тонким слоем жидкости, если эта процедура поможет достижению цели, — уменьшить энергию поверхности.
В этом очерке будет рассказано об одной не очень широко известной возможности достичь этой цели. Собственно, кристаллы, разумеется, о ней доподлинно знали всегда, а вот люди изучают ее меньше, чем другие возможности, и лишь в последние годы стали изучать ее попристальнее.
Речь идет вот о чем. Стремясь уменьшить энергию своей поверхности, кристалл может «вспотеть», покрыться тонким слоем собственной жидкости: кристалл меди — жидкой медью, кристалл ментола— жидким ментолом. Происходит это лишь при высокой температуре, но происходит, и цель достигается.
Начну рассказ немного издалека. Известно, что, как правило, расплав хорошо смачивает кристалл того же вещества. В классическом учебнике теоретической физики Л. Д. Ландау и Е. М. Лифшица об этом явлении сказано так: «обычно смачивает».
Не будем уточнять тонкости и сочтем, что смачивает! Именно потому, что смачивает, снег, лежащий на берегу реки, намокает, так как вода всасывается в пористый снег, состоящий из мельчайших льдинок, смачиваемых ею. И потому же в снежных хижинах (они называются «иглу») вода не стекает со стен и потолка, так как всасывается снегом. И поэтому же в поставленном нами опыте отлично можно было наблюдать, как расплавленный жидкий ментол, который можно переохладить до комнатной температуры, охотно наползает на иглу кристаллического ментола, касающуюся поверхности расплава. Кинограмма, помещенная в очерке, отчетливо это иллюстрирует.
Итак, сочтем, что жидкость смачивает собственный кристалл. Из этого обстоятельства естественно следует, что энергетически выгодно закрыть собственным расплавом поверхность кристалла, что поверхностная энергия кристалла ?к больше, чем поверхностная энергия двух новых образовавшихся границ: кристалл — жидкость ?к_ж и жидкость — пар ?ж_ п. Очевидно, если один квадратный сантиметр поверхности кристалла будет закрыт пленкой расплава, то поверхностная энергия, связанная с кристаллом, уменьшится, т. е. выделится энергия
?? = ?к — (?к_ж + ?ж_ п) > 0.
Казалось бы, «зная» о такой возможности уменьшить энергию поверхности, кристаллы должны были бы автоматически становиться мокрыми, «запотевать», и мы должны были бы жить в мире мокрых кристаллов. Их запотевание, однако, становится достижимым лишь при температурах, очень близких к температуре плавления кристалла.
Не станем пытаться вычислять ту температуру, при которой кристалл «запотеет», покроется пленкой жидкости и о нем можно будет с полным основанием сказать: он мокрый. Расчет сделать не просто, да и нужды в этом нет. А вот понять, почему кристалл не всегда мокрый, а покрывается пленкой только при высокой температуре накануне плавления, — в этом нужда есть, и сделать это мы попытаемся.
Собственная жидкая пленка на поверхности кристалла, говоря канцелярским языком, возникает, так сказать, в порядке подготовки к расплавлению кристалла. Когда температура кристалла заметно ниже температуры его плавления, давление находящегося над ним пара (
Из наших рассуждений естественно вытекает два тесно взаимосвязанных следствия. Первое: кристалл нельзя перегревать, так как при температуре более низкой, чем температура плавления, на его поверхности зарождается жидкость. Второе: расплавление кристалла можно представить как следствие утолщения жидкой пленки, возникшей на его поверхности. Такова природа вещей. Переохладить расплав можно, так как прежде, чем он начнет кристаллизоваться, в нем должен образоваться жизнеспособный зародыш, а этот процесс нуждается в затрате некоторой энергии. А перегреть кристалл нельзя, так как прежде, чем он достигнет температуры плавления, на его поверхности возникнет зародыш жидкой фазы в виде пленки, появление которой сопровождается не поглощением, а выделением энергии.
Здесь уместно рассказать об одном эксперименте из числа тех, для осуществления которых недостаточно располагать даже лучшими приборами, а нужны еще и выдумка, и хитринка экспериментатора. Эксперимент этот, в котором изучалось плавление оловянных стержней, был поставлен еще в довоенные годы советскими физиками С. Э. Хайкиным и Н. П. Бене. Авторы эксперимента решили выяснить, так ли уж категоричен запрет, налагаемый термодинамикой на перегрев кристалла. Быть может, не нарушая ее строгие «безмодельные» законы, можно все же перегреть кристалл. Рассуждали они так. Если перегреть кристалл невозможно из-за того, что на его поверхности появляются жидкие пленки, то, быть может, можно будет перегреть кристалл, если как-то запретить жидким пленкам появляться на его поверхности. Именно это они экспериментально и осуществили. Через монокристальный оловянный стержень они пропускали ток в несколько сот ампер и одновременно параллельно оси стержня обдували его мощной струей воздуха, которая отводила от поверхности тепло и делала ее немного менее нагретой, чем объем стержня. На охлажденной поверхности стержня жидкие пленки не образовывались, и объем, сохраняя кристалличность, нагревался на 1—1,5 °С выше температуры плавления олова, т. е. перегревался.
На этом, пожалуй, рассказ о жидких пленках на поверхности кристалла, о его запотевании можно окончить.
О ПУЗЫРЬКАХ ГАЗА В КРИСТАЛЛЕ