name='105pt1'>υ
F
/
R
η
. Мы воспользовались знаком «про­ порционально» потому, что не учли конкретной геометрии потока воздуха вокруг шарика. Точный расчет приводит к формуле, которая от нашей отличается лишь множите­лем
1
/6 .
π
, и таким образом:

υ
=
F
/
R
η

Обсудим величину
F
.

Если бы шарик падал в вакууме, то

F
=
F
=
mg
=
4/
3
π
R
3
ρ
g
.

Так как шарик находится в воздухе, то на него действует и архимедова сила
F↑
, кото­рая направлена противоположно
F↓
и определяется той же формулой, что и
F↓
, только величину
ρ
— плотность вещества шарика нужно заменить величиной
ρo
— плот­ностью воздуха. Вот теперь можно записать интересую­щую нас формулу в окончательном виде:

υ =
1 (
F↓ - F↑)
/6π
R
η = 2/9. g
R
2.
(ρ - ρo)/ η

Эту формулу называют формулой Стокса. Нам она позже понадобится.

Вычислим скорость падения маленькой дождевой кап­ли. Допустим, что ее размер
R
10-1 см. Так как
g
≈ 103 см/сек2, η ≈ 2
.
10-2 г/см.сек (пуаз),
ρ
= 1 г/см3,
ρo
= 1,2.10-3 г/см3, то
υ
102 см/сек.

Итак, мы выяснили, что маленькие капли летят со ско­ростью, пропорциональной квадрату их радиуса, и что величина этой скорости порядка 100 см за секунду. Если маленькая капля зародилась в облаке, которое плавает над землей на высоте около километра, и если ничто не помешает ей себя сохранить в полете, до земли ей лететь долго — около 15 мин. Еще раз подчеркнем — расска­занное о маленькой дождевой капле справедливо при соблюдении очень важной оговорки: если капля сохра­нит себя в целости на протяжении всего времени полета от облака до земли. И еще одна оговорка: все рассказан­ное о скорости полета капли относится к установившему­ся, или, как говорят физики, стационарному, режиму. В са­мом начале полета капля двигалась ускоренно, пока не достигла стационарной скорости.

 

Так во время полета изменяется форма крупной капли, падающей в воздухе

Теперь о больших каплях. Речь идет о каплях крупных, размер которых достигает не­скольких миллиметров. Та­кие капли иногда образуются в искусственных условиях, например при распаде струй, а иногда и в условиях есте­ственного дождя. С ними про­исходит вот что.

Большая капля, встречая при падении сопротивление воздуха, расплющивается
(
Рυ
>>
Рл
!!!). Плоская водя­ная лепешка, летящая в воз­духе, надувается им и стано­вится подобна парашюту. По мере того как этот миниатюр­ный водяной парашютик раз­дувается воздухом, образую­щая его пленка становится все тоньше и в конце концов рвется, прокалывается воз­душной струей. И тогда она распадается на мелкие капли, у которых уже своя судьба.

В американском «Жур­нале прикладной физики» (
J
. Арр
l
. Р
his
., 1956,
V.
27,
N
10) Мегарвей и Тейлор 
опубликовали великолепную подборку фотографий летя­щих больших капель. Каждая фотография была сделана в момент мгновенной вспышки яркого света. Они отлично иллюстрируют рассказанное.

Если разрушение большой капли произошло в дожде­вом потоке, некоторые из образовавшихся маленьких ка­пель испарятся, не долетев до земли, а иные сами, или слив­шись с себе подобными, одолеют этот путь. А быть может, некоторые из мелких капель, возникших при разрушении капли-парашюта, столкнутся с другими каплями, сольют­ся с ними и примут участие в сотворении нового парашютика. Так тоже бывает.

Вы читаете Капля
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×