и CS, не мог получить никакой информации ни о ключе К, ни о сообщении М. Это может быть выражено в виде

I((K,М);(S,CS)) = H(K,М) — H ((K,М)/(S,CS)) = (4.22)

H(K,М) — H (K/(S,CS)) — H (М/(S,CS,K)) = 0.

При знании ключа К, множества CS из стего S однозначно извлекается сообщение М:

H(М/(S,CS,K)) = 0,

Поэтому из выражения (4.22) получим

H(K/(S,CS) = H(K,М),

или

H(K/(S,CS) = H(М) + H (K/М) >= H(М), (4.23)

соответственно, так как H(K/М) >= 0.

Таким образом, для нарушителя неопределенность ключа стойкой стегосистемы должна быть не меньше неопределенности передаваемого скрытого сообщения. Это требование для совершенных стегосистем очень похоже на требование неопределенности ключа К для совершенных систем шифрования, для которых энтропия ключа К при перехваченной криптограмме Е должна быть не меньше энтропии шифруемого сообщения М [7]:

.

Делаем вывод, что действительный контейнер должен быть неизвестным для нарушителя, чтобы обеспечить теоретико-информационную стойкость стегосистемы. Нарушитель не способен ни обнаружить факт передачи скрываемого сообщения, ни читать его, если выполняются два условия:

1) Знание S и CS не уменьшает для нарушителя неопределенности о скрываемом сообщении

H(М/(S,CS)) = H(М/S) = H (М).

2) Условная энтропия ключа должна быть не меньше энтропии скрываемого сообщения:

H(K/(S,CS)) >= H(М).

При таких условиях требуемая стойкость может быть обеспечена в вероятностных стегосистемах.

В работе [2] приводятся общие описания возможных вероятностных стегосистем. Пусть отправитель для встраивания скрываемых сообщений в качестве действительных контейнеров использует цифровое изображение пейзажа на выходе электронной камеры. Нарушитель может знать общий вид снимаемого изображения и характеристики используемой камеры. Но атакующий и даже законный получатель не знают точное положение камеры и угол съемки. Колебание камеры даже на долю градуса приводит к существенно отличающимся снимкам. Поэтому при анализе нарушителем перехваченного стего он не способен определить какое цифровое изображение является действительным контейнером и тем самым не может выявить различия между стего и контейнером. В качестве множества контейнеров CS в данном примере используются всевозможные варианты изображения пейзажа под разными углами с учетом неидеальности оптико-электронного преобразователя используемой камеры.

Вторым примером вероятностной стегосистемы является использование в качестве действительных контейнеров значений отсчетов аналогового случайного сигнала, например, речевого. В различных технических устройствах для преобразования аналоговых сигналов к цифровому виду используются аналого-цифровые преобразователи с некоторой погрешностью квантования отсчетов, причем моменты дискретизации отсчетов определяются тактовым генератором, положение стробирующих импульсов которого также имеет некоторую погрешность. Следовательно, для нарушителя, точно знающего характеристики аналогового сигнала, существует неопределенность между аналоговым и цифровым представлением сигнала. При использовании такого сигнала в качестве контейнера, потенциально можно построить стойкую стегосистему, если энтропия встраиваемого сообщения не превышает величины указанной неопределенности [12].

4.4. Практические оценки стойкости стегосистем

4.4.1. Постановка задачи практической оценки стегостойкости

Ранее рассмотренные теоретические оценки стойкости стегосистем, например, теоретико- информационные, предполагают, что скрывающий информацию и нарушитель обладают неограниченными вычислительными ресурсами для построения стегосистем и, соответственно, стегоатак на них, придерживаются оптимальных стратегий скрывающего преобразования и стегоанализа, располагают бесконечным временем для передачи и обнаружения скрываемых сообщений и т. д. Разумеется, такие идеальные модели скрывающего информацию и нарушителя неприменимы для реалий практических стегосистем. Поэтому рассмотрим известные к настоящему времени практические оценки стойкости некоторых стегосистем, реально используемых для скрытия информации [13–15].

В последние годы появились программно реализованные стегосистемы, обеспечивающие скрытие информации в цифровых видео- и аудиофайлах. Такие программы свободно распространяются, легко устанавливаются на персональные компьютеры, сопрягаются с современными информационными технологиями и не требуют специальной подготовки при их использовании. Они обеспечивают встраивание текста в изображение, изображение в изображение, текста в аудиосигнал и т. п. В современных телекоммуникационных сетях типа Интернет передаются очень большие потоки мультимедийных сообщений, которые потециально могут быть использованы для скрытия информации. Одной из наиболее актуальных и сложных проблем цифровой стеганографии является выявление факта

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату