45
Некоторые исследователи могут заметить, что хотя ни квантовая теория поля, ни текущее состояние теории струн не дают объяснения свойств частиц, этот вопрос более насущен для теории струн. Он достаточно сложен, но для заинтересованных читателей приведём краткое резюме. Свойства частиц в квантовой теории поля — например, их массы — задаются числами, которые подставляются в уравнения теории. Сам факт того, что уравнения квантовой теории поля допускают варьирование таких чисел, является математическим способом сказать, что квантовая теория поля не определяет массы частиц, а, наоборот, использует их в качестве начальных данных. В теории струн гибкость в выборе масс частиц имеет схожее математическое происхождение — уравнения допускают свободное варьирование некоторых чисел, — однако проявление этой гибкости более значимо. Свободно изменяющиеся числа — числа, которые могут изменяться без каких-либо затрат энергии — соответствуют наличию в теории безмассовых частиц. (Если вернуться к главе 3 к языку кривых потенциальной энергии, то представьте совершенно плоскую кривую, то есть горизонтальную линию. Подобно тому как прогулка по совершенно плоской поверхности не меняет вашей потенциальной энергии, изменение значения такого поля не приведёт к затратам энергии. Поскольку масса частицы соответствует кривизне кривой потенциальной энергии квантового поля вблизи её минимума, то кванты таких полей являются безмассовыми.) Избыточное число безмассовых частиц является особенно неприятным свойством любой предлагаемой теории, потому что есть строгие ограничения на такие частицы, вытекающие из экспериментальных данных, полученных на ускорителях, и космологических наблюдений. Чтобы теория струн была жизнеспособной, безмассовым частицам необходимо придать массу. В течение последних лет было предложено несколько механизмов генерации масс, основанных на потоках, пронизывающих дырки в пространствах Калаби–Яу дополнительных измерений. Я вернусь к этому в главе 5.
46
Возможно, что в экспериментах будут получены данные, которые сильно пошатнут нашу веру в теорию струн. Структура теории струн гарантирует, что определённые базовые принципы должны соблюдаться во всех физических явлениях. Среди них
47
Когда говорят о центре чёрной дыры, то часто создаётся впечатление, что это некое место в пространстве. Но это не так. Центром чёрной дыры следует считать определённый момент времени. При пересечении горизонта событий чёрной дыры время и пространство (радиальное направление) меняются ролями. Если вы падаете в чёрную дыру, ваше радиальное движение являет собой движение во времени. Таким образом, вас толкает в центр чёрной дыры точно так же, как вас толкает к следующему моменту времени. В этом смысле центр чёрной дыры похож на последний момент времени.
48
По многим причинам энтропия является ключевым понятием в физике. В обсуждаемом случае энтропия используется как диагностика того, не упускает ли теория струн какую-нибудь существенную физику при описании чёрных дыр. Если бы так случилось, то результат вычислений беспорядка внутри чёрной дыры на основе струнной математики оказался бы неверным. Тот факт, что ответ точно совпадает с тем, что Бекенштейн и Хокинг вывели с помощью совсем других рассуждений, указывает на то, что теория струн успешно ухватила фундаментальное физическое описание. Это очень обнадёживающий результат. Более подробно об этом можно прочитать в книге «Элегантная Вселенная», глава 13.
49
Первое указание на парность форм Калаби–Яу возникло в работе Ланса Диксона, а также в независимой работе Вольфганга Лерхе, Николаса Уорнера и Кумруна Вафы. В моей работе с Роненом Плессером был предложен метод построения первого конкретного примера таких пар, которые мы назвали
50
Утверждение теории струн об успешном соединении квантовой механики и общей теории относительности основывается на множестве вычислений, а также на убедительных результатах, описанных в главе 9.
51