далёком будущем. Сильное замедление означает, что в какой-то момент расширение прекратится, после чего пойдёт обратный процесс и начнётся период пространственного сжатия. В результате непрекращающегося сжатия произойдёт
Подход каждой группы был прост: измерить насколько быстро пространство расширялось в некоторые моменты в прошлом и, сравнив эти скорости, определить темп замедления расширения в течение всей истории развития Вселенной. Отлично! Но как это сделать? Подобно многим вопросам в астрономии, всё свелось к тщательному наблюдению света. Галактики подобны сигнальным огням маяков, чьё движение отражает пространственное расширение. Если бы мы могли определить насколько быстро галактики удалялись от нас в тот давний момент, когда они излучили свет, что сейчас дошёл до нас, мы смогли бы определить, как быстро расширялось пространство в различные моменты в прошлом. Сравнивая эти скорости, можно было бы узнать темп космического замедления. В этом и состоит главная идея.
Для проработки всех подробностей необходимо решить два основных вопроса. Как на основе современных наблюдений за удалёнными галактиками можно определить расстояния до них, и как мы можем измерить скорость их движения? Начнём с расстояния.
Расстояние и яркость
Одной из самых старых и важных проблем в астрономии является определение расстояний до небесных объектов. Метод
Когда вы смотрите на звёзды в ночном небе, параллакс слишком мал, чтобы его заметить; ваши глаза расположены слишком близко друг к другу, чтобы возникла значительная разница в угле. Однако есть хитроумный способ преодолеть данное затруднение: нужно измерять положение звезды в два приёма, с периодом в шесть месяцев, заменив тем самым взаимное расположение ваших глаз двумя положениями Земли в пространстве. Большее расстояние между точками наблюдения увеличивает параллакс; он по- прежнему мал, но в некоторых случаях достаточно велик, чтобы его измерить. В самом начале XIX столетия среди учёных была напряжённая конкуренция, кто первый измерит такой звёздный параллакс; в 1838 году немецкий астроном и математик Фридрих Бессель заслужил лавры победителя, успешно измерив параллакс звезды под названием 61 Лебедя в созвездии Лебедя. Угловая разница оказалась равной 0,000084 градуса, что соответствует расстоянию до звезды в 10 световых лет.
С тех пор метод постоянно улучшался и теперь применяется на спутниках, которые могут измерять гораздо меньшие углы параллакса, чем в наблюдениях Бесселя. Эти достижения позволили проводить точные измерения расстояний до звёзд, если они не превышают несколько тысяч световых лет. Однако если сильно выйти за эти рамки, разница в углах опять становится слишком маленькой и метод перестаёт работать.
Другой подход, который может измерять гораздо бо?льшие расстояния на небе, основан на ещё более простой идее: чем дальше вы отодвигаете светящийся объект, будь это автомобильные фары или яркая звезда, тем больше излучённый свет рассеивается по пути своего движения к нам, и поэтому тускнеет. Сравнивая
Но здесь возникает отнюдь не малое препятствие, как определить собственную яркость астрофизических объектов. Звезда тусклая, потому что находится очень далеко или потому что сама по себе не очень яркая? Это объясняет, почему столь долгим оказался поиск астрономических объектов, которые были бы достаточно распространены в космосе, и собственную яркость которых можно было бы достоверно определить без необходимости находиться рядом. Если бы удалось найти такие
В течение всего столетия с попеременным успехом предлагалось и применялось множество разных стандартных свечей. В последнее время наиболее плодотворным оказался метод, использующий звёздные вспышки, называемые
Такие сверхновые звёзды являются идеальными стандартными свечами. Взрыв настолько мощный, что его можно видеть с фантастически больших расстояний. Важно, что поскольку вспышки являются результатом одного и того же физического процесса — увеличение массы карлика примерно до 1,4 масс Солнца и последующий взрыв, — то образовавшиеся сверхновые имеют примерно одинаковые собственные светимости. Однако проблема в использовании сверхновых типа Ia состоит в том, что в средней галактике такие вспышки происходят раз в несколько столетий: как нам поймать их в процессе взрыва? Обе группы, космологический проект «Supernova cosmology» и поисковая группа «High-Z Supernova», взялись за решение этого вопроса способом, похожим на эпидемиологические исследования: точная информация об однотипных относительно редких событиях может быть получена, если изучать достаточно большую популяцию. Поэтому на помощь пришли телескопы, снабжённые широкоформатными детекторами, способными одновременно анализировать тысячи галактик. Тогда исследователи смогли установить местоположение дюжины сверхновых типа Ia, которые в дальнейшем можно более детально изучать с помощью обычных телескопов. Основываясь на их яркости, учёные смогли определить расстояния до дюжины галактик, удалённых на миллиарды световых лет, — и таким образом завершить первый шаг в решении поставленной задачи.
И всё-таки, что за расстояние?
Прежде чем перейти к следующему шагу — определению скорости расширения Вселенной в момент взрыва каждой из сверхновых, стоит вкратце остановиться на одном затруднительном моменте. Когда мы говорим о расстояниях на таких фантастически огромных масштабах, причём в контексте постоянно расширяющейся Вселенной, возникает вопрос, какое именно расстояние измеряют астрономы? Это