Применение вспомогательных программ подобным способом является очень хорошим методом устранения в приложениях возможных проблем безопасности. Создание таких вспомогательных программ, как правило, является достаточно прямолинейным процессом, а их правильность определить относительно просто. Однако в конструкции таких программ есть пара моментов, в которых нужно проявить осторожность.

Довольно часто между главным приложением и вспомогательной программой передаются конфиденциальные данные. Например, для программы unix_chkpwd необходимо передавать незакодированный пароль пользователя для подтверждения его правильности. При передаче такой информации нужно принять некоторые меры предосторожности. Очень заманчиво использовать аргумент командной строки, однако это позволит любому пользователю, который в нужное время запустит ps, увидеть незакодированные пользовательские пароли. Если вместо этого для подачи данных применяется канал (обычно указанный в качестве стандартного ввода для вспомогательной программы), то во время передачи ни одна другая программа не сможет увидеть данные.

Вспомогательные программы также должны тщательно проверять тот факт, что вызывающая их программа имеет разрешение на выполнение запрашиваемого действия. Вспомогательная программа unx_chkpwd не позволяет программе проверять пароли ни одного пользователя, кроме того, который ее запустил. Здесь применяется свой собственный uid для подтверждения того, что активизирующая программа может проверять пароль пользователя. Вспомогательная программа utempter выполняет аналогичные проверки для того, чтобы убедиться, что программы не могут удалять терминалы из базы данных utmp, если только они не предназначены делать это.

22.2.3. Ограничение доступа к файловой системе

Еще одним способом устранения ошибок в кодах, предоставляющих возможность для атак, является ограничение набора файлов, к которым программа имеет доступ, с помощью системного вызова chroot(). Как обсуждалось в главе 14, метод chroot(), сопровождающийся вызовом chdir(), изменяет корневой каталог процесса, ограничивая совокупность файлов, доступных процессу. Это не предотвращает возможность эксплуатации, но иногда может нарушать работу приложения. Если сетевой сервер, работающий как не root, эксплуатируется удаленно, то данному удаленному пользователю значительно труднее применить этот сервер в качестве базы локальной эксплуатации, поскольку он не сможет получить доступ ни к каким setuid-файлам (этим могут воспользоваться наиболее простые локальные эксплуатации программ).

Анонимные ftp-серверы являются наиболее распространенными программами, использующими преимущества механизма chroot(). В последнее время он становится более популярным и в других программах, многие системные администраторы применяют команду chroot для того, чтобы перевести работу системных демонов в ограниченное окружение и предусмотреть проникновение 'незваных гостей'.

22.3. Общие бреши системы безопасности

После рассмотрения некоторых способов, позволяющих уменьшить потенциальное воздействие незащищенного кода, давайте перейдем к изучению самых общих программных ошибок, которые приводят к появлению проблем в системе безопасности. Несмотря на то что вся оставшаяся часть данной главы освещает некоторые вопросы, на которые нужно обратить внимание, это отнюдь не полный перечень. Любой автор программ, которые должны быть безопасными, обязан изучить не только данную главу.

22.3.1. Переполнение буфера

Пожалуй, наиболее распространенной программной ошибкой, которая становится причиной локальных и удаленных эксплуатаций, является переполнение буфера. Ниже приведен пример программы с возможностью переполнения буфера.

 1: /* bufferoverflow.с */

 2:

 3: #include <limits.h>

 4: #include <stdio.h>

 5: #include <string.h>

 6:

 7: int main(int argc, char ** argv) {

 8:  char path[_POSIX_PATH_MAX];

 9:

10:  printf('копирование строки длиной %d ', strlen(argv[1]));

11:

12:  strcpy(path, argv[1]);

13:

14:  return 0;

15: }

16:

На первый взгляд код кажется довольно безопасным; хотя в итоге эта программа фактически даже ничего не делает. Она копирует строку, передаваемую пользователем, в фиксированное пространство стека, даже не проверяя, есть ли в стеке для этого свободное место. Попробуйте запустить эту программу с одним длинным аргументом командной строки (скажем, 300 символов). Это вызовет ошибку сегментации, когда strcpy() попытается записать информацию, превышающую пространство, выделенное для массива path.

Чтобы лучше понять, как происходит распределение памяти для программного стека, взгляните на рис. 22.1. В большинстве систем стек процессора растет вниз; то есть, чем раньше какой-либо объект размещается в стеке, тем больший адрес логической памяти он получает. К тому же первый элемент стека является защищенной областью памяти; любая попытка получить к нему доступ приводит к ошибке сегментации.

Рис. 22.1. Карта памяти стека приложения

Следующий участок стека содержит локальные переменные, используемые кодом, который запускает остальную часть программы. Здесь мы вызываем функцию _main(), несмотря на то что это может принести дополнительные сложности, поскольку касается таких моментов, как динамическая загрузка. Когда запускающий код вызывает для программы метод main(), он сохраняет адрес, который метод main() возвращает при завершении работы со стеком. Когда активизируется main(), может понадобиться сохранение некоторых регистров микропроцессора в стеке с возможностью повторного использования этих регистров. Затем метод выделяет пространство для своих локальных переменных.

Возвращаясь к нашему примеру переполнения буфера, следует отметить, что для переменной path выделяется память на верхушке стека. Байт path[0] находится на самом

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату