особенностей жесткого диска он может обрабатывать от 2 до 64 (и больше) секторов за операцию. Конкретное значение можно узнать с помощью ключа -i
(оно находится в графе MaxMultSect
). В целом, скорость обработки данных прямо пропорциональна количеству секторов, однако некоторые приводы (например, WD Caviar) при больших значениях -m
начинают жутко тормозить. Выяснить практическое положение дел помогает ключ -t
, измеряющий пропускную способность дисковой подсистемы в режиме чтения.
Запредельные значения -m
могут привести к повреждению данных. По этой причине рисковать, экспериментируя с этим параметром, без необходимости не рекомендуется!
Ключ -M
отвечает за настройку шумовых характеристик накопителя (Automatic Acoustic Management, AAM). Значение 128 соответствует наиболее тихому режиму, 254 — наиболее быстрому. Промежуточные значения в общем случае не определены (некоторые накопители их поддерживают, некоторые нет). Следует сказать, что значение 128 не только уменьшает шум, но и способствует меньшому износу накопителя, однако падение производительности может быть очень и очень значительным, поэтому трудно посоветовать, какое именно значение следует выбрать.
Ключ -c
управляет режимом передачи данных. Параметр 0 — 16-битная передача, 1 — 32-битная передача, 3 — 32-битная передача со специальным синхросигналом. По умолчанию ядро использует параметр 3 (возможно, не для всех ядер), как наиболее надежный, но и менее производительный, чем 1. Большинство современных чипсетов вполне нормально работают с параметром 1, так что излишняя осторожность тут ни к чему.
Ключ -d1
активирует, a -d0 дезактивирует режим DMA, значительно повышающий производительность и радикально снижающий нагрузку на процессор. Однако на практике так бывает далеко не всегда. Устройства IDE, висящие на одной шине, могут конфликтовать между собой, и тогда хотя бы одно из них должно быть принудительно переведено в режим PIO. Выяснить, как обстоят дела в каждом конкретном случае, помогает ключ -T
, измеряющий скорость передачи данных. Ключ -d1
обычно используется совместно с ключом -Xnnn
, форсирующим конкретный режим PIO или DMA. Режиму PIO
соответствует значение (n + 8
), т.е. -X9
задает PIO1, a -X12
— PIO4. Режиму DMAn соответствует значение (n+32
), например, -X34
для DMA2, a Ultra DMA — (n+64
), например, -Х69
для UDMA5, который обеспечивает наивысшую производительность, но поддерживается не всеми жесткими дисками и чипсетами. Узнать список поддерживаемых режимов можно с помощью ключа -i
. По умолчанию ядро выбирает не слишком агрессивные режимы передачи данных, оставляя солидный запас производительности за спиной.
Переход на высшие режимы UDMA чреват разрушением всего дискового тома, поэтому обязательно зарезервируйте его содержимое перед началом экспериментов!
Для сохранения установок необходимо дать команду hdparm -k 1 /dev/hdx
, в противном случае они будут утеряны при первом же сбросе контроллера IDE или перезапуске машины.
Выбор файловой системы
Существует два типа файловых систем — журналируемые (journaling) и нет. К первым относятся ext3fs, ReiserFS, XFS, а последним — minix, ext2fs и UFS. Журналирумые файловые системы намного легче переносят зависание системы и отключение питания во время интенсивных дисковых операций, автоматически возвращая файловую систему в стабильное состояние. Однако от других типов разрушений (отказ контроллера, дефекты поверхности, вирусное нашествие) журналирование уже никак не спасает, а вот производительность падает изрядно.
Для домашних компьютеров и большинства рабочих станций журналирование не нужно, и надежности файловой системы ext2fs вполне достаточно, особенно если компьютер оборудован источником бесперебойного питания. В ответственных случаях используйте ext3fs или ReiserFS. По тестам ReiserFS в среднем вдвое, а на операциях записи — в 35 раз быстрее, чем ext3fs, что особенно хорошо заметно на мелких файлах. В реальности же часто все бывает наоборот. Высокая латентность ReiserFS (промежуток между подачей запроса и получением ответа) вкупе с агрессивной загрузкой процессора приводят к заметному отставанию от ext3fs, что особенно хорошо заметно на мелких файлах (да-да, на тех самых, на которых нам обещали выигрыш!). Подробнее об этом можно прочитать здесь: http://kerneltrap.org/node/view/3466.
Журналирование можно значительно ускорить, если разместить журнал на отдельном носителе. Такой журнал называется внешним (external). Подключить его можно командной строкой следующего вида: tune2fs -J device=
(где
— имя раздела соответствующего устройства), причем внешний журнал должен быть предварительно создан командой mke2fs -О journal_dev external_journal
. Команда tune2fs -J size=
управляет размером журнала. Чем меньше размер журнала, тем ниже производительность. Предельно допустимый размер составляет 102 400 блоков или ~25 Мбайт (точное значение зависит от размера блока, о котором мы еще поговорим).
По умолчанию ext3fs журналирует только метаданные (т.е. служебные данные файла, например, такие как inode), записывая их на диск только после того, как будет обновлен журнал. Для увеличения быстродействия можно задействовать 'разупорядоченный' режим, в котором метаданные записываются одновременно с обновлением журнала, что соответствует команде: mount /dev/hdx /data -о data=writeback
. Естественно, надежность файловой системы при этом снижается. При желании можно журналировать все данные (команда mount /dev/hdx /data -о data= journal
), после чего никакие зависания или отказы питания нам будут не страшны, правда о производительности придется забыть.
При создании новой файловой системы важно выбрать правильный размер блока (в терминологии MS-DOS/Windows — кластера). На ext2fs и ext3fs это осуществляется командой mke2fs -b block- size
, на XFS — mkfs.xfs -b size=block-size
и newfs -b block-size
— на UFS. Чем больше блок, тем ниже фрагментация, но и выше дисковые потери за счет грануляции дискового пространства. Некоторые файловые системы (например, UFS) поддерживают фрагменты (fragments) — порции данных внутри блоков, позволяющие задействовать свободное пространство в 'хвостах' блоков, благодаря чему использование блоков большого размера уже не приводит ни к каким потерям. Файловая система ReiserFS, в отличие от остальных, не нарезает диск на ломтики фиксированного размера, а динамически выделяет требуемый блок данных, забивая диск файлами под завязку. В среднем это на 6% увеличивает доступный объем, однако приводит к чрезмерной фрагментации, 'съедающей' всю производительность. Рекомендуется использовать максимально доступный размер блока (4 Кбайт для ext2fs и ext3fs, 16 Кбайт для UFS и 64 Кбайт для XFS, файловые системы ReiserFS и JFS не поддерживают этой опции) и задействовать максимальное количество фрагментов на блок (в UFS — 8).
Другая важная опция определяет режим хеширования каталогов. Для ускорения работы с каталогами, содержащими большое количество файлов и подкаталогов, каталог должен быть организован в виде двоичного дерева. В ext2fs и ext3fs это осуществляется командой mke2fs -о dir_index
, а в ReiserFS — mkreiserfs -h
, где
— один из следующих типов хэш-таблицы: r5
, rupasov
или tea
. По умолчанию выбирается тип r5
, который