объяснительно. Поэтому можно объяснить только излишней увлеченностью то, что общее и единичное переставали быть для него равносильными категориями. И эта увлеченность настолько была у Аристотеля сильна, что пифагорейские числовые конструкции он прямо высмеивал как нечто наивное и фантастическое.
Основные материалы по вопросу об отношении аристотелевского и платоновского учений о числе содержатся в XIII и XIV книгах'Метафизики'. Из XIII книги мы укажем: на 2 главу с доказательством того, что числа не образуют собой ни чувственной, ни сверхчувственной действительности, но среднее между тем и другим; на 3 главу с указанием необычайной важности этого среднего положения числа для понимания и осмысления вещей и их красоты. Из XIV книги укажем на 1 и 2 главы с критикой пифагорейско–платонического конструирования всякого числа на основании монады и неопределенной диады, а также на 6 главу с доказательством невозможности понимать числа как причины вещей. Обе эти книги'Метафизики'пересыпаны разными доказательствами несубстанциальности чисел. Но все эти доказательства основаны на понимании платонической числовой субстанциальности в слишком грубом и вещественном смысле, чего Платон вовсе не думал. Аристотель плохо разбирается в том, что сам он является только продолжателем платоновского учения о числах, поскольку он все таки оставляет за ними очень тонкое смысловое функционирование. Но прогресс у Аристотеля все таки был, поскольку Аристотель умел мастерски характеризовать то, что он называл потенциальной природой числа и что мы теперь могли бы назвать осмысливающей и оформляющей природой числа. Аристотеля интересует порождающая роль чисел, которая у Платона, конечно, мыслится на втором плане в сравнении с вечной, предельно обобщенной и потому неподвижной природой чисел.
§4. Ранний эллинизм
1. Назревание принципа континуально–сущностной эманации у философов разных периодов классики
Об этом назревании необходимо, сказать несколько слов потому, что эманация будет играть огромную роль в позднем эллинизме, то есть в неоплатонизме, а в позднем эллинизме как раз и будет сформулировано последнее и окончательное античное представление о числе.
а) Собственно говоря, уже в знаменитых парадоксах
Таким образом, уже элейцы учили о континуальном становлении, то есть о таком текуче– сущностном становлении, которое лишено всякой раздельности (ИАЭ I 331 – 334, 338 – 339).
б) Можно сказать, что античность никогда не расставалась с двумя идеями: бесконечная делимость, постепенно переходящая в сплошное и чистое становление, близкое к нулю и потому граничащее с отсутствием всякой делимости и с превращением этой делимости в сплошную и неделимую текучесть; с другой стороны, все существующее для античного мышления всегда было чем то раздельным, единораздельным целым, структурой, ясно очерченным кристаллом, фигурой и скульптурно оформленным целым, или телом. Совмещение этих двух идей было, можно сказать, основным и заветным намерением греческих философов. И если у элейцев неделимость брала верх, то у
По Анаксагору, все делимо до бесконечности, то есть деление доходит до величин, едва отличных от нуля. С другой стороны, однако, эта стремящаяся к нулю делимость не превращается у Анаксагора в сплошной туман или в пыль, не превращается в непознаваемую мглу. Каждое качество, испытывающее бесконечную делимость, остается у Анаксагора раз и навсегда самим собою. Оно в основе своей уже неделимо. Мало того. Каждое качество содержит в себе всю бесконечность качеств, но каждый раз со своей собственной структурой этой бесконечности. Но и эта структурно определенное качество, взятое само по себе, в свою очередь тоже делимо до бесконечности.
Таким образом, по Анаксагору, все на свете погружено в вечное становление, поскольку оно бесконечно делимо; а с другой стороны, все на свете везде и всюду является неподвижным целым, вечно сохраняющим свою отчетливую фигурность. И эта фигурность, доходящая в своей делимости до какой угодно малой величины, не расплывается до полного своего уничтожения, а, наоборот, остается тем целым, к которому его части могут приближаться как угодно близко. После этого неудивительно, что один немецкий ученый понял учение Анаксагора о гомеомериях как открытие теории бесконечно малых[215].
И вообще, учение Анаксагора очень часто излагается в слишком элементарной и чересчур примитивной форме. Все знают, например, что, по Анаксагору, вначале имеется хаос отдельных частиц, а уже потом ум приступает к оформлению этого хаоса и к превращению его в космос. Но при этом забывают, что никаких малых частей, которые представляли бы собою как нибудь оформленное целое, по Анаксагору, вовсе не существует. Каждая малая часть, по Анаксагору, может стать еще более малой, и это уменьшение никогда не может довести ее до нуля. По Симплицию, Анаксагор (59 B 3) прямо говорил:'В началах нет ни наименьшего, ни наибольшего… Ибо если все во всем и все из всего выделяется, то и из того, что кажется наименьшим, выделится нечто меньше его, и то, что кажется наибольшим, выделилось из чего то большего, чем оно'. В том же фрагменте читаем:'И в малом ведь нет наименьшего, но всегда есть еще меньшее. Ибо бытие не может разрешиться в небытие'. Также не может существовать и такого абсолютно большого, в отношении чего не существовало бы ничего еще большего (A 45=II 18, 8 – 10). Поэтому если Анаксагор учит, что вначале все вещи были вместе, то есть что вначале был хаос вещей, то это нужно понимать не в том смысле, что каждый такой элемент был какой то определенной конечной величиной, он не был просто конечной величиной, но такой, которая могла бы стать меньше любой заданной величины. Наличие инфинитезимальной интуиции здесь вполне очевидно.
в) Точно так же уже