«обернут». То есть копирование управляющего ресурсом объекта выполняет «глубокое копирование». Некоторые реализации стандартного класса string включают указатели на память из «кучи», где хранятся символы, входящие в строку. Объект такого класса содержит указатель на память из «кучи». Когда объект string копируется, то копируется и указатель, и память, на которую он указывает. Здесь мы снова встречаемся с «глубоким копированием».
• Передача владения управляемым ресурсом. Иногда нужно гарантировать, что только один RAII-объект ссылается на ресурс, и при копировании такого объекта RAII владение ресурсом передается объекту-копии. Как объясняется в правиле 13, это означает копирование с применением auto_ptr.
Копирующие функции (конструктор копирования и оператор присваивания) могут быть сгенерированы компилятором, но если сгенерированные версии не делают того, что вам нужно (правило 5 объясняет поведение по умолчанию), придется написать их самостоятельно. Иногда имеет смысл поддерживать обобщенные версии этих функций. Такой подход описан в правиле 45.
• Копирование RAII-объектов влечет за собой копирование ресурсов, которыми они управляют, поэтому поведение ресурса при копировании определяет поведение RAII-объекта.
• Обычно при реализации RAII-классов применяется одна из двух схем: запрет копирования или подсчет ссылок, но возможны и другие варианты.
Правило 15: Предоставляйте доступ к самим ресурсам из управляющих ими классов
Управляющие ресурсами классы заслуживают всяческих похвал. Это бастион, защищающий от утечек ресурсов, а отсутствие таких утечек – фундаментальное свойство хорошо спроектированных систем. В идеальном мире вы можете положиться на эти классы для любых взаимодействий с ресурсами, не утруждая себя доступом к ним напрямую. Но мир неидеален. Многие программные интерфейсы требуют доступа к ресурсам без посредников. Если вы не планируете отказаться от использования таких интерфейсов (что редко имеет смысл на практике), то должны как-то обойти управляющий объект и работать с самим ресурсом.
Например, в правиле 13 изложена идея применения интеллектуальных указателей вроде auto_ptr или tr1::shared_ptr для хранения результата вызова фабричной функции createInvestment:
std::tr1::shared_ptr<Investment> pInv(createInvestment()); // ec i?aaeea 13
Предположим, есть функция, которую вы хотите применить при работе с объектами класса Investment:
int daysHeld(const Investment *pi); // возвращает количество дней
// хранения инвестиций
Вы хотите вызывать ее так:
int days = daysHeld(pInv); // ошибка!
но этот код не скомпилируется: функция daysHeld ожидает получить указатель на объект класса Investment, а вы передаете ей объект типа tr1::shared_ptr <Investment>.
Необходимо как-то преобразовать объект RAII-класса (в данном случае tr1::shared_ptr) к типу управляемого им ресурса (то есть Investment*). Есть два основных способа сделать это: неявное и явное преобразование.
И tr1::shared_ptr, и auto_ptr предоставляют функцию-член get для выполнения явного преобразования, то есть возврата (копии) указателя на управляемый объект:
int days = daysHeld(pInv.get()); // нормально, указатель, хранящийся
// в pInv, передается daysHeld
Как почти все классы интеллектуальных указателей, tr1::shared_ptr и auto_ptr перегружают операторы разыменования указателей (operator-> и operator*), и это обеспечивает возможность неявного преобразования к типу управляемого указателя:
class Investment { // корневой класс иерархии
public: // типов инвестиций
bool isTaxFree() const;
...
};
Investment *createInvestment(); // фабричная функция
std::tr1::shared_ptr<Investment> // имеем tr1::shared_ptr
pi1(createInvestment()); // для управления ресурсом
bool taxable1 = !(pi1->isTaxFree()); // доступ к ресурсу
// через оператор ->
...
std::auto_ptr<Investment> pi2(createInvestment()); // имеем auto_ptr для
// управления ресурсом
bool taxable2 = !((*pi2).isTaxFree()); // доступ к ресурсу
// через оператор *
...
Поскольку иногда необходимо получать доступ к ресурсу, управляемому RAII-объектом, то некоторые реализации RAII предоставляют функции для неявного преобразования. Например, рассмотрим следующий класс для работы со шрифтами, инкапсулирующий «родной» интерфейс, написанный на C:
FontHandle getFont(); // из С API – параметры пропущены
// для простоты
void releaseFont(FontHandle fh); // из того же API
class Font { // класс RAII
public:
explicit Font(FontHandle fh) // захватить ресурс:
:f(fh) // применяется передача по значению,
{} // потому что того требует C API
~Font() {releaseFont(f);} // освободить ресурс
private:
FontHandle f; // управляемый ресурс – шрифт
};
Предполагается, что есть обширный программный интерфейс, написанный на C, работающий исключительно в терминах FontHandle. Поэтому часто приходится преобразовывать объекты из типа Font в FontHandle. Класс Font может предоставить функцию явного преобразования, например get:
class Font {
public:
...
FontHandle get() const {return f;} // функция явного преобразования
...
};
К сожалению, пользователю придется вызывать get всякий раз при взаимодействии с API:
void changeFontSize(FontHandle f, int newSize); // из C API
Font f(getFont());
int newFontSize;
...
changeFontSize(f.get(), newFontSize); // явное преобразование
// из Font в FontHandle
Некоторые программисты могут посчитать, что каждый раз выполнять явное